首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Benzoin and caprolactam were examined for their capability of inducing alkaline DNA fragmentation in mouse and rat liver DNA after treatment in vivo. Three different methods were used. With the alkaline elution technique we measured an effect presumably related to the conformation of the DNA coil. With a viscometric and a fluorometric unwinding method we measured an effect presumably related to the number of unwinding points in DNA. For both compounds only the alkaline elution technique was clearly positive. The results suggest that both caprolactam and benzoin can induce an important change in the conformation of the DNA coil without inducing true breaks in DNA.  相似文献   

2.
DNA damage induced in vivo by 3'-methyl-4-dimethylaminoazobenzene (3'CH3DAB) was investigated with 2 differently sensitive techniques: the alkaline elution assay and the viscometric measurement of DNA damage. 3'CH3DAB appeared to be falsely negative with the alkaline elution assay, whereas with the viscometric approach, which is about 30-50 times more sensitive, it appeared positive, and the DNA damage was dose-dependent.  相似文献   

3.
The genotoxicity of 22 mono-functional alkylating agents (including 9 dialkyl N-nitrosoamines) and 10 DNA crosslinkers selected from IARC (International Agency for Research on Cancer) groups 1, 2A, and 2B was evaluated in eight mouse organs with the alkaline single cell gel electrophoresis (SCGE) (comet) assay. Groups of four mice were treated once intraperitoneally at the dose at which micronucleus tests had been conducted, and the stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow were sampled 3, 8, and/or 24 h later. All chemicals were positive in the SCGE assay in at least one organ. Of the 22 mono-functional alkylating agents, over 50% were positive in all organs except the brain and bone marrow. The two subsets of mono-functional alkylating agents differed in their bone marrow genotoxicity: only 1 of the 9 dialkyl N-nitrosoamines was positive in bone marrow as opposed to 8 of the 13 other alkylating agents, reflecting the fact that dialkyl N-nitrosoamines are poor micronucleus inducers in hematopoietic cells. The two groups of mono-functional alkylating agents also differ in hepatic carcinogenicity in spite of the fact that they are similar in hepatic genotoxicity. While dialkyl N-nitrosoamines produce tumors primarily in mouse liver, only one (styrene-7,8-oxide) out of 10 of the other type of mono-functional alkylating agents is a mouse hepatic carcinogen. Taking into consideration our previous results showing high concordance between hepatic genotoxicity and carcinogenicity for aromatic amines and azo compounds, a possible explanation for the discrepancy might be that chemicals that require metabolic activation show high concordance between genotoxicity and carcinogenicity in the liver. A high percent of the 10 DNA crosslinkers were positive in the SCGE assay in the gastrointestinal mucosa, but less than 50% were positive in the liver and lung. In this study, we allowed 10 min alkali-unwinding to obtain low and stable control values. Considering that DNA crosslinking lesions can be detected as lowering of not only positive but also negative control values, low control values by short alkali-treatment might make it difficult to detect DNA crosslinking lesions. In conclusion, although both mono-functional alkylating agents and DNA crosslinkers are genotoxic in mouse multiple organs, the genotoxicity of DNA crosslinkers can be detected in the gastrointestinal organs even though they were given intraperitoneally followed by the short alkali-treatment.  相似文献   

4.
The alkaline elution technique has been adapted for use in the assessment of DNA damage induced in the livers and lungs of mice after administration of an alkylating agent, methylemthanesulfonat (MMS). At 4 h after administration of MMS, damage ot DNA was readily demonstrable; the damage was repaired in liver by 24 h. The lung, particularly of the A/J mouse, exhibited an increased alkaline elution rate when compared to C57BL/6J, and repair was not entirely complete (as judged from the rate of alkaline elution of DNA) by 24 h. The rate of elution was dependent upon temperature. It is believed that this adaptation should have great utility in examining DNA repair in vivo.  相似文献   

5.
The ureic herbicide linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] (CAS 330-55-2) was investigated for genotoxicity in a series of in vivo experiments. Since human exposure to herbicides is not only to the active principles, but also to all the chemicals present in the commercial formulation, we tested both pure and commercial linuron. Groups of rats were treated with gavage containing different doses of the herbicide (pure compound or commercial formulation) for 14 days. The doses were 150, 300 and 450 mg/kg b.wt. for the pure compound and 315.8, 631.6 and 947.4 mg/kg b.wt. for the commercial formulation (47.5% of linuron). Faeces and urine were collected at regular intervals. Urine specimens were analysed for their mutagenic metabolites, thioethers and d-glucaric acid content. Faeces extracts were tested for mutagenicity. Linuron's ability to cause DNA damage and cytogenetic effects was also investigated after treating groups of rats once with different doses of pure or commercial linuron. DNA single-strand breaks were assessed in rat liver using the alkaline elution technique and the single-cell microgel electrophoresis assay (SCGE: `comet' assay), and in rat testes cells with the SCGE assay. Micronuclei induction was analysed in rat bone marrow erythrocytes. Results obtained were mainly negative when the excretion of mutagenic metabolites in urine and faeces of animals treated with the pure compound or with the linuron-based commercial formulation were monitored, whereas an increase in the urinary excretion of thioethers and d-glucaric acid was observed in rats treated with the commercial formulation. No increase in the frequency of micronucleated polychromatic erythrocytes was observed in the treated animals. However, linuron affected the viability of hepatocytes isolated from animals treated with higher doses. This cytotoxicity was accompanied by the induction of DNA single-strand breaks in the liver, as seen by the alkaline elution assay. The potential of pure linuron to induce in vivo DNA damage was confirmed with the microgel electrophoresis technique (`comet' assay). Cytotoxicity was also seen in rat testes cells. However, no indication of DNA damage was visible.  相似文献   

6.
The method presented is based on the alkaline elution procedure for the determination of DNA single-stand (ss) breaks developed by Kohn and on the principles of DNA quantification after binding with the dye Hoechst 33258. In the present study, modification of the alkaline elution procedure with regard to the elution solution volume was performed. The influences of the DNA strandedness, the ethylenediaminetetraacetate/tetraethylammonium hydroxide denaturation and elution solution presence, the DNA solution pH, the dye amount, and the incubation time for the formation of the dye-ssDNA complex on the DNA fluorometric quantification were also studied. The modified DNA alkaline elution procedure followed by the optimized fluorometric determination of the ssDNA was applied on liver tissue from both untreated and treated (N-nitroso-N-methylurea- administered) Wistar rats. The criteria for the selection of the appropriate estimator and statistical analysis of the obtained results are also presented. The method of the DNA alkaline elution followed by fluorometric determination of ssDNA as modified and evaluated is an accurate and reliable approach for the determination of in vivo induced ssDNA strand breaks.  相似文献   

7.
Astaxanthin, a natural and nutritional red carotenoid pigment, is used as a dietary supplement. The intention of the present study was to investigate the beneficial effects of dietary pigment astaxanthin, against cyclophosphamide-induced oxidative stress and DNA damage. The end points of evaluation of the study included: (a) malondialdehyde, glutathione and superoxide dismutase concentration in liver to detect oxidative stress; (b) normal and modified alkaline comet assays (the latter includes lesion-specific enzymes formamidopyrimidine-DNA glycosylase and endonuclease-III) to detect normal and oxidative stress-induced DNA damage by cyclophosphamide in the mouse bone marrow and the peripheral blood lymphocytes. In addition, micronucleus assay and chromosomal aberration test capable of detecting the DNA damage were also carried out in peripheral blood and bone marrow of mice. Cyclophosphamide (100 mg/kg intra-peritoneal) treatment led to significant increase in liver malondialdehyde and decreased the antioxidant enzymes glutathione and superoxide dismutase. Further, cyclophosphamide also significantly increased the DNA damage as observed from normal and modified comet assays as well as micronucleus and chromosomal aberration assay. Pre-treatment with astaxanthin (12.5, 25 and 50 mg/kg/day for 5 days per oral) resulted in the restoration of oxidative stress markers such as malondialdehyde, glutathione and superoxide dismutase in liver. The amelioration of oxidative stress with astaxanthin pre-treatment correlated well with the decreased DNA damage as evident from normal and modified alkaline comet assays of bone marrow cells and peripheral blood lymphocytes. Further astaxanthin pre-treatment also reduced the frequency of chromosomal breakage and micronucleus formation in the mouse bone marrow cells and peripheral blood reticulocytes. It is thus concluded that pre-treatment with astaxanthin attenuates cyclophosphamide-induced oxidative stress and subsequent DNA damage in mice and it can be used as a chemoprotective agent against the toxicity of anticancer drug cyclophosphamide.  相似文献   

8.
An automated alkaline elution system for the detection of DNA damage has been developed. After manual application of samples, which is completed within 5 min, the subsequent supply of liquids, changes in flow rates, and temperature are controlled automatically. The system operates 16 filters and may easily be expanded. The sensitivity of the fluorometric DNA determinations with the Hoechst 33258 dye is increased by using an elution buffer (20 mM Na2EDTA, pH 12.50) with low background fluorescence. DNA is determined using an automated setup similar to the one recently presented by Sterzel et al. (1985, Anal. Biochem. 147, 462-467). The most significant modification is the use of a neutralization buffer which allows variations in the pH of eluted fractions. This change increases the sensitivity of the DNA measurements. The automated alkaline elution system was evaluated using the nematocide 1,2-dibromo-3-chloropropane (DBCP) in a study of its genotoxic effects in the testes and the kidneys. Significant DNA damage was induced in testicular cells by 2.5 microM DBCP (1 h) in vitro and 85 mumol/kg DBCP ip (3 h) in vivo. The damage appeared after short treatment times (10 min in vivo). Variations in the observed DBCP response in vivo were largely due to interanimal variations. The automated alkaline elution system proved to be a sensitive assay also for the detection of DNA damage in kidney nuclei prepared from rats exposed to DBCP. Provided that kidney nuclei from untreated rats, mice, or hamster were kept ice-cold until lysing, 85-100% of their DNA was retained after 16 h of elution, indicating highly intact DNA. Under the same conditions, guinea pig DNA was rapidly degraded unless the nuclei were prepared in a buffer with a higher concentration of Na2EDTA (20 mM).  相似文献   

9.
One percent orotic acid supplemented diet is a promoting treatment in the rat model of liver carcinogenesis. After treatment with this type of diet, DNA alterations were observed using alkaline sucrose gradients and alkaline elution methods. In this work we have utilized two unwinding methods for the detection of DNA fragmentation. One method is a viscosimetric method in which the rate of increase in DNA viscosity with time is related to the rate of alkaline DNA unwinding. The second method measures fluorimetrically the amount of renatured and denatured DNA after different times allowed for alkaline DNA unwinding. These two methods are very sensitive in detecting DNA breaks induced by typical alkylating agents, X-rays and H2O2. The two unwinding methods were clearly negative for the orotic acid supplemented diet. We suggest that the DNA alterations detected with alkaline sucrose gradients and alkaline elution methods, after promoting treatment with orotic acid, are probably different from the DNA breaks induced by typical alkylating agents, X-rays and H2O2.  相似文献   

10.
N-Acryloyl-N'-phenylpiperazine is a promoter of redox reactions synthesized recently, and proposed as an activator for the polymerization of acrylic resins for biomedical use. The chemical was analyzed for different genotoxicity endpoints, to obtain both information on its possible mutagenic/carcinogenic potential and a model analysis of a tertiary arylamine, which belongs to a class of chemicals commonly used as polymerization accelerators in the biomaterial field. The genotoxicity endpoints considered were: gene mutation in the Salmonella test; structural and numerical chromosome alterations in Chinese hamster V79 cells, evaluated by the micronucleus test together with an immunofluorescent staining specific for kinetochore proteins; in vitro and in vivo DNA damage, evaluated in V79 cells and in mouse liver by the alkaline DNA elution technique. On the whole, the results indicate that N-acryloyl-N'-phenylpiperazine is to be regarded not so much as a DNA-damaging agent, but as a genomic mutagen. Indeed, it was not mutagenic in Salmonella (though its toxicity did not allow testing concentrations over 70 micrograms/plate), and it was weakly positive in inducing chromosomal fragmentation in vitro (one positive, not dose-related, result out of five different doses tested) and in vivo DNA damage (increases in DNA elution rate never doubling control values). The chemical was, however, clearly positive (with dose-dependent effects up to about 25 times the control value) in causing numerical chromosome alterations, at the maximal non-toxic doses.  相似文献   

11.
We examined time-dependent changes in antioxidant vitamins and oxidative damage to DNA and lipids in the bone marrow, liver, and plasma of rats given total body irradiation (TBI) with X-rays at 3 Gy. The oxidative damage to DNA and lipids was evaluated by measuring increases of 8-hydroxydeoxyguanosine (8OHdG) in DNA and 4-hydroxy-2-nonenal (HNE), respectively. After the TBI, marked increases in 8OHdG and HNE were detected at 3 to 5 h in the bone marrow, while gradual increases in these parameters were detected after a few days in the liver. These changes in 8OHdG and HNE were well correlated within each tissue. In the bone marrow, levels of both vitamin C and vitamin E were decreased by the TBI; however, the changes in vitamin C were earlier and greater than those in vitamin E. In the liver, the level of vitamin C did not decrease, but that of vitamin E decreased due to the TBI. Changes in HNE, vitamin C, and vitamin E in the plasma were similar to those in the liver. Within each tissue, the time of decrease in antioxidants was almost the same as that of the increase in oxidative damage. An increase in total iron due to the TBI was also detected in these tissues. In particular, the total iron in the bone marrow was markedly increased at a few hours after the TBI, with a slight increase in transferrin and no increase in ferritin. Exposure studies performed on cells or isolated DNA showed that an increase in 8OHdG was detected immediately after irradiation at more than 100 Gy in bone marrow cells and at less than 10 Gy in isolated DNA, suggesting that an increase in 8OHdG is undetectable even in bone marrow immediately after the TBI at 3 Gy. These results indicate that the onset of oxidative damage to DNA and lipids was delayed after TBI at 3 Gy, that it was quite different in the bone marrow and the liver, and that an increase in iron and decrease in antioxidant vitamins were involved in the mechanism of oxidative damage.  相似文献   

12.
Baicalein is the major flavonoid extracted from the root of Scutellaria baicaleins. This flavonoid is used extensively in Chinese herbal medicine. In the present study baicalein is evaluated for its radioprotective properties. Human blood cells when exposed to the γ-radiation ex vivo in presence of baicalein underwent the reduced DNA damage compared to the control. Baicalein administration prior to the whole-body γ-radiation (4 Gy) exposure of mice resulted in protecting the damage to the DNA as measured in their blood cells by alkaline comet assay. Mice when exposed to the radiation (whole body; 1.7 Gy) resulted in damage to the bone marrow as measured by micronucleated reticulocyte (MNRET) formation. Baicalein pre-treatment reduces the radiation induced damage to the bone marrow cells, as there was decrease in the percentage MNRET formation. These findings indicate radio-protecting ability of baicalein.  相似文献   

13.
A Maura  A Pino  R Ricci 《Mutation research》1989,227(2):125-129
The DNA-damaging, mutagenic and chromosomal effects of eugenol were assayed by the DNA alkaline elution technique, the granuloma pouch assay and the bone marrow micronucleus test in rats. With all the techniques used, eugenol did not show any genotoxic activity.  相似文献   

14.
The nature of DNA damage induced by N-methyl-N-nitrosourethane (NMUT) in the guinea pig pancreas, both in vitro and in vivo, and subsequent repair was investigated by alkaline sucrose density gradient analysis, using a non-radioactive fluorimetric procedure for DNA determination in gradient fractions. In vitro exposure of pancreatic slices to 20 mM NMUT for 30 min damaged DNA to less than 2.24 . 10(6) dalton fragments. However, incubation of NMUT-treated slices for 3 h in a fresh medium resulted in the repair of most of DNA damage, as indicated by the conversion of low molecular weight DNA fragments into heavy DNA of molecular weight comparable to DNA from control slices. Additionally, a single administration of NMUT (30 mg/kg, i.p.) to guinea pigs induced extensive DNA damage, to less than 2.24 . 10(6) dalton fragments in the pancreas within 4 h; similar DNA damage was observed in the liver. However, in the pancreas and liver of guinea pigs sacrificed at increasing intervals after NMUT administration, there was a gradual conversion of shortened DNA fragments to heavy high molecular weight DNA, indicating repair of DNA damage. It appears that most of DNA damage in the pancreas and liver was repaired by 14 and 7 days, respectively, following NMUT administration.  相似文献   

15.
The genotoxicity of 30 aromatic amines selected from IARC (International Agency for Research on Cancer) groups 1, 2A, 2B and 3 and from the U.S. NTP (National Toxicology Program) carcinogenicity database were evaluated using the alkaline single cell gel electrophoresis (SCG) (Comet) assay in mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8 and 24 h after treatment. For the 20 aromatic amines that are rodent carcinogens, the assay was positive in at least one organ, suggesting a high predictive ability for the assay. For most of the SCG-positive aromatic amines, the organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Organ-specific genotoxicity, therefore, is necessary but not sufficient for the prediction of organ-specific carcinogenicity. For the 10 non-carcinogenic aromatic amines (eight were Ames test-positive and two were Ames test-negative), the assay was negative in all organs studied. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative non-genotoxic (Ames test-negative) carcinogens. The alkaline SCG assay, which detects DNA lesions, is not suitable for identifying non-genotoxic carcinogens. The present SCG study revealed a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic non-carcinogens. These results suggest that the alkaline SCG assay can be usefully used to evaluate the in vivo genotoxicity of chemicals in multiple organs, providing for a good assessment of potential carcinogenicity.  相似文献   

16.
We have examined the induction and repair of gamma-ray-induced DNA strand breaks in different subpopulations of cells in mouse jejunal epithelium and bone marrow using a modification of the alkaline elution methodology whereby different populations of cells are selectively labeled with radioactive DNA precursors. Mice were labeled by intraperitoneal injection with between 0.5 and 2.0 mu Ci/g of [3H]thymidine at various times prior to irradiation with 10 Gy of gamma rays. In the studies with jejunal epithelium, the timing of the injection of the radiolabel relative to the irradiation was varied between 6 and 72 h, depending on the cell population of interest. The DNA damage and repair characteristics representative of both the total cell population and the radiolabeled fraction of these cells were then measured. Little difference was noted in the amount of initial damage induced in these different populations of cells. However, for both the jejunum and bone marrow, cells that incorporated the radiolabel within 6 h after injection (i.e., rapidly proliferating cells) repaired their strand breaks more rapidly than did the remainder of the population. In the case of jejunum, the repair capacity of the radiolabeled cell population progressively diminished as the cells matured and differentiated so that cells that contained the radiolabel 72 h after injection (i.e., mature villus cells) actually repaired their strand breaks more slowly than did the bulk cells.  相似文献   

17.
The role of selenium, a trace element in the human diet, has been extensively studied against cancer, immunity and infectious/inflammatory diseases. The purpose of the present study was to investigate the beneficial effect of ebselen, an organo-selenium compound, against cyclophosphamide-induced oxidative stress and DNA damage in mice. Malondialdehyde and total glutathione were estimated in the liver to detect the oxidative stress induced by cyclophosphamide. Standard and modified comet assays (the latter incorporated lesion-specific enzymes, formamidopyrimidine-DNA glycosylase and endonuclease-III) were used to detect the normal and oxidative stress-induced DNA damage by cyclophosphamide in the mouse bone marrow and the peripheral blood lymphocytes. In addition, a micronucleus assay capable of detecting DNA damage was also carried out in the mouse bone marrow and the peripheral blood reticulocytes induced by cyclophosphamide. The results confirm that pre-treatment with ebselen (2.5, 5 and 10 mg/kg) for 5 consecutive days decreased the oxidative stress induced by cyclophosphamide (100 mg/kg) based on the restoration in concentration of malondialdehyde and glutathione in the liver and decreased DNA damage and micronuclei count in the bone marrow and the peripheral blood. It is concluded that pre-treatment with ebselen attenuates cyclophosphamide-induced oxidative stress and the resultant DNA damage in mice.  相似文献   

18.
We used a modification of the alkaline single cell gel electrophoresis (SCG) (Comet) assay to test the in vivo genotoxicity of 6 heterocyclic amines, Trp-P-1 (25 mg/kg), Trp-P-2 (13 mg/kg), IQ (13 mg/kg), MeIQ (13 mg/kg), MeIQx (13 mg/kg) and PhIP (40 mg/kg), in mouse liver, lung, kidney, brain, spleen, bone marrow and stomach mucosa. Mice were sacrificed 1, 3, and 24 h after intraperitoneal injection. Trp-P-2, IQ, MeIQ, and MeIQx yielded statistically significant DNA damage in the stomach, liver, kidney, lung and brain; Trp-P-1 in the stomach, liver and lung; and PhIP in the liver, kidney and brain. None of the heterocyclic amines induced DNA damage in the spleen and bone marrow. Our results suggest that the alkaline SCG assay applied to multiple organs is a good way to detect organ-specific genotoxicity of heterocyclic amines in mammals.  相似文献   

19.
The molecular basis for chromosome aberration formation has been studied using the sensitive techniques of premature chromosome condensation and DNA alkaline elution. The dose response of Chinese hamster ovary cells to bleomycin treatment at the DNA and chromosome levels was compared. Each DNA elution curve showed a 2-component profile, with a more sensitive component apparent at low doses. The chromosome aberration curves also exhibited a 2-component profile when determined in G2-PCC; however, this phenomenon was less apparent when chromosome damage was enumerated in mitotic figures. These results suggest that differential sensitivity to bleomycin exists within the cellular chromatin. The effect of dose rate on aberration formation was examined by administering bleomycin at 2 concentrations that, with different treatment times, yielded equivalent amounts of DNA damage. The chromatid exchange rate was independent of dose rate, suggesting that rapidly repaired DNA lesions are not involved in the formation of exchanges.  相似文献   

20.
Micronucleus tests were carried out in bone marrow of mice treated with 1-nitropropane, 2-nitropropane and cisplatin. For 1-nitropropane and 2-nitropropane the results were negative. With cisplatin a dose-dependent increase in the number of polychromatic erythrocytes with micronuclei was observed. The lowest positive dose was 0.1 mg/kg (P less than 0.001, Mann-Whitney-Wilcoxon test). The hepatocarcinogen 2-nitropropane showed clastogenic activity in human lymphocytes in vitro in the presence of S9 (Bauchinger et al., 1987). The negative results in bone marrow suggest that short-lived genotoxic metabolites may be formed in the liver but do not reach the bone marrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号