首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid gas chromatography-mass spectrometry method for [15N]ammonia analysis is deseribed which is based on the formation of [15N]glutamic acid from ammonia and analysis of isotopic abundance in the N-trifluoroacetyl-n-butylester glutamate derivative. Mean recovery of [15N]ammonia added to either plasma or urine was greater than 99% with a relative standard deviation of less than 10%. The method can be applied to the determination of extremely low levels of ammonia through an isotope dilution technique. The [15N]ammonia abundance of blood and urine was determined in an adult following on oral dose (500 mg) of 15NH4Cl. A peak isotopic abundance of 13 atoms% excess was reached by 30 min. Urinary excretion of [15N]ammonia during the first 4 h after administration of the isotope amounted to 4.1% of the isotope administered.  相似文献   

2.
The weatherloach, Misgurnus anguillicaudatus, is a freshwater, facultative air-breathing fish that lives in streams and rice paddy fields, where it may experience drought and/or high environmental ammonia (HEA) conditions. The aim of this study was to determine what roles branchial Na+/K+-ATPase, H+-ATPase, and Rhcg have in ammonia tolerance and how the weatherloach copes with ammonia loading conditions. The loach's high ammonia tolerance was confirmed as was evident from its high 96 h LC50 value and high tissue tolerance to ammonia. The weatherloach does not appear to make use of Na+/NH4+-ATPase facilitated transport to excrete ammonia when exposed to HEA or to high environmental pH since no changes in activity were observed. Using immunofluorescence microscopy, distinct populations of vacuolar (V)-type H+-ATPase and Na+/K+-ATPase immunoreactive cells were identified in branchial epithelia, with apical and basolateral staining patterns, respectively. Rhesus C glycoprotein (Rhcg1), an ammonia transport protein, immunoreactivity was also found in a similar pattern as H+-ATPase. Rhcg1 (Slc42a3) mRNA expression also increased significantly during aerial exposure, although not significantly under ammonia loading conditions. The colocalization of H+-ATPase and Rhcg1 to the similar non-Na+/K+-ATPase immunoreactive cell type would support a role for H+-ATPase in ammonia excretion via Rhcg by NH4+ trapping. The importance of gill boundary layer acidification in net ammonia excretion was confirmed in this fish; however, it was not associated with an increase in H+-ATPase expression, since tissue activity and protein levels did not increase with high environmental pH and/or HEA. However the V-ATPase inhibitor, bafilomycin, did decrease net ammonia flux whereas other ion transport inhibitors (amiloride, SITS) had no effect. H+-ATPase inhibition also resulted in a consequent elevation in plasma ammonia levels and a decrease in the net acid flux. In gill, aerial exposure was also associated with a significant increase in membrane fluidity (or increase in permeability) which would presumably enhance NH3 permeation through the plasma membrane. Taken together, these results indicate the gill of the weatherloach is responsive to aerial conditions that would aid ammonia excretion.  相似文献   

3.
Recently, a “Na+/NH4 + exchange complex” model has been proposed for ammonia excretion in freshwater fish. The model suggests that ammonia transport occurs via Rhesus (Rh) glycoproteins and is facilitated by gill boundary layer acidification attributable to the hydration of CO2 and H+ efflux by Na+/H+ exchanger (NHE-2) and H+-ATPase. The latter two mechanisms of boundary layer acidification would occur in conjunction with Na+ influx (through a Na+ channel energized by H+-ATPase and directly via NHE-2). Here, we show that natural ammonia loading via feeding increases branchial mRNA expression of Rh genes, NHE-2, and H+-ATPase, as well as H+-ATPase activity in juvenile trout, similar to previous findings with ammonium salt infusions and high environmental ammonia (HEA) exposure. The associated increase in ammonia excretion occurs in conjunction with a fourfold increase in Na+ influx after a meal. When exposed to HEA (1.5 mmol/l NH4HCO3 at pH 8.0), both unfed and fed trout showed differential increases in mRNA expression of Rhcg2, NHE-2, and H+-ATPase, but H+-ATPase activity remained at control levels. Unfed fish exposed to HEA displayed a characteristic reversal of ammonia excretion, initially uptaking ammonia, whereas fed fish (4 h after the meal) did not show this reversal, being able to immediately excrete ammonia against the gradient imposed by HEA. Exposure to HEA also led to a depression of Na+ influx, demonstrating that ammonia excretion can be uncoupled from Na+ influx. We suggest that the efflux of H+, rather than Na+ influx itself, is critical to the facilitation of ammonia excretion.  相似文献   

4.
In order to study lethal and sublethal effects of ammonia to the estuarine crab Chasmagnathus granulata in the presence of an additional stress factor such as salinity, we determined the LC50 (96 h) of ammonia at 20‰ and in response to osmotic stress (5–40‰) and evaluated ammonia accumulation in the haemolymph of C. granulata and ammonia effects on osmo- and ion-regulation of this species through determinations of the haemolymph Na+, Ca2+, Cl and osmotic concentration. The LC50 values (96 h) of total ammonia (NH3+NH4+) were 10.10, 17.85 and 14.0 mM for crabs maintained at 5, 20 or 40‰ salinity, respectively, suggesting that this crab is fairly resistant to ammonia. The haemolymph ammonia concentration augmented with ambient ammonia during a 6-h exposure to sublethal ammonia concentrations which were not enough to reach equilibrium between external and haemolymph ammonia. At 20‰ salinity, following a 96-h exposure to sublethal concentrations, a significant decrease (P<0.05) of haemolymphatic chloride concentration was registered at 3.3 and 5.5 mM of total ammonia. At 40‰ salinity, a significant increase (P<0.05) of the haemolymph osmotic pressure was apparent at 5.5 mM total ammonia. We postulate that C. granulata gives priority to NH3 formation as a mechanism to eliminate it by simple diffusion. The differential Na+ and Cl regulation of crabs maintained at 20‰ salinity could modify the strong ion difference, augmenting pH, which in turn should lead the NH4+/NH3 equilibrium towards NH3.  相似文献   

5.
Effects of ammonia on astrocytes play a major role in hepatic encephalopathy, acute liver failure and other diseases caused by increased arterial ammonia concentrations (e.g., inborn errors of metabolism, drug or mushroom poisoning). There is a direct correlation between arterial ammonia concentration, brain ammonia level and disease severity. However, the pathophysiology of hyperammonemic diseases is disputed. One long recognized factor is that increased brain ammonia triggers its own detoxification by glutamine formation from glutamate. This is an astrocytic process due to the selective expression of the glutamine synthetase in astrocytes. A possible deleterious effect of the resulting increase in glutamine concentration has repeatedly been discussed and is supported by improvement of some pathologic effects by GS inhibition. However, this procedure also inhibits a large part of astrocytic energy metabolism and may prevent astrocytes from responding to pathogenic factors. A decrease of the already low glutamate concentration in astrocytes due to increased synthesis of glutamine inhibits the malate–aspartate shuttle and energy metabolism. A more recently described pathogenic factor is the resemblance between NH4 + and K+ in their effects on the Na+,K+-ATPase and the Na+,K+, 2 Cl? and water transporter NKCC1. Stimulation of the Na+,K+-ATPase driven NKCC1 in both astrocytes and endothelial cells is essential for the development of brain edema. Na+,K+-ATPase stimulation also activates production of endogenous ouabains. This leads to oxidative and nitrosative damage and sensitizes NKCC1. Administration of ouabain antagonists may accordingly have therapeutic potential in hyperammonemic diseases.  相似文献   

6.
An in vitro method based on observations of 14N and 15N isotope fluxes between ammonia N and non-ammonia (NAN) pools was established to study the ruminal degradation rate of rapeseed meal protein. Feed protein equal to 125 mg of N/l was incubated in the presence of rumen fluid, mineral buffer, and a carbohydrate mixture formulated to provide a constant supply of fermentable energy over the entire incubation period. The ammonia N was labelled with the 15N isotope, and the incubations were carried out for 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, and 10 h. A model with six pools was used to estimate the rate of protein degradation to ammonia N and the rate of microbial N synthesis from ammonia N. The parameter values were adjusted based on the sizes of the ammonia 14N, ammonia 15N, 14NAN, and 15NAN pools observed at different time points over the incubation period. The rate of rapeseed meal N degradation was 0.06/h (0.028 standard deviation between runs), and the predicted effective protein degradability was 0.38 (0.122 standard deviation between runs). The current approach seemed appropriate for determining microbial N synthesis from ammonia N, but measurement of the direct incorporation of amino acids into microbial N may be required to adequately characterize the metabolic events involved in ruminal protein degradation.  相似文献   

7.
An intelligent automated ammonia monitoring system was developed based on a commercial ammonia selective electrode used in flow injection analysis (FIA) mode. A prototype automatic monitoring system was produced and interfaced to an IBM personal computer. The interfacing involved the design and fabrication of a sensor interface, an inter-integrated circuit (I2C) card and a flow injection analysis controller. This ammonia monitoring system will be used in conjunction with the dissolved oxygen and temperature sensors for the determination of ammonia toxicity. Use of a sodium hydroxide reagent line allowed determination of total ammonia (un-ionized (NH3) + ionized (NH4+)). With the output of the pH and temperature probes, un-ionized ammonia can be determined based on an equilibrium calculation. This experimental system was controlled under an expert system, Crystal. It provides the knowledge of equipment setup, control and results interpretation based on the rules stored in its knowledge base.  相似文献   

8.
Ammonia often has been reported to inhibit cell growth. The aqueous ammonia equilibrium between the un-ionized form (NH3) and the ammonium ion (NH4 +) depends on the pH of the solution. Extensive studies in batch and continuous cultivation by varying pH and total ammonia concentration were carried out to investigate whether a kinetic model describing growth inhibition by ammonia has to be based on the total ammonia concentration, or the concentration of NH3. A significant relationship between the specific growth rate and death rate, respectively, and the NH3 concentration but not the total ammonia concentration, was detected. An adaptation of the cells to high ammonia levels was not observed. Based on these results a new kinetic model for ammonia mediated growth inhibition is suggested. For high density cultivation it is recommended to control the pH at the lower limit of the growth optimum to keep the NH3 level low.  相似文献   

9.
An ammonia limited chemostat culture of Gymnodinium simplex (Lohm.) Kofoid & Swezy was perturbed with ammonia and fluctuations in the free intracellular amino acid pools were followed 80 min. The steady-state value of glutamate was 2.07 ± 10-15 mol cell-1 and of glutamine was 0.31 ± 10-15 mol cell-1. Five minutes after the perturbation, a substantial rise in glutamine was observed with a corresponding decrease in glutamate. This is considered a result of glutamine synthetase acting as the primary ammonia assimilating enzyme. The level of ammonia and the major free amino acids reached a maximum 10 min after the perturbation and then slowly decreased.  相似文献   

10.
Biogas production from nitrogen‐rich feedstock results in release of ammonia (NH3), causing inhibition of the microbial process. The reported threshold ammonia value for stable biogas production varies greatly between studies, probably because of differences in operating conditions. Moreover, it is often difficult to separate the effect of ammonia inhibition from that of organic loading rate (OLR), as these two factors are often interrelated. This study attempted to distinguish the effects of ammonia and OLR by analysis of two laboratory‐scale biogas reactors operating with thin stillage and subjected to an increase in free ammonia (from 0.30 to 1.1 g L?1) either by addition of an external nitrogen source (urea) or by increasing the OLR (3.2–6.0 g volatile solids L?1 d?1). The results showed that ammonia concentration was detrimental for process performance, with the threshold for stability in both processes identified as being about 1 g NH3‐N L?1, irrespective of OLR. Analysis of the methanogenic community showed limited differences between the two reactors on order level and a clear increase in the abundance of Methanomicrobiales, particularly Methanoculleus sp., in response to increasing ammonia concentration. Further comprehensive molecular analysis revealed that diverse Methanoculleus species dominated in the reactors at a given ammonia level at different OLR. The acetogenic community was clearly affected by both ammonia concentration and OLR, suggesting that the volatile fatty acid load in relation to the higher OLR was important for the dynamics of this community.  相似文献   

11.
Li X X  Ying J Y  Chen Y  Zhang L M  Gao Y S  Bai Y F 《农业工程》2011,31(3):174-178
Nitrogen accumulation in soil is increasing in Inner Mongolia which is resulted mainly from fertilization accompanied by conversion of large area of grasslands to croplands. Ammonia-oxidation is the key step of nitrification which is driven by ammonia-oxidizing microorganisms, and study on the response of ammonia-oxidizing microorganisms is necessary for understanding the effects of nitrogen fertilization on ecosystem functions. In this study, the abundance and community structure of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) under long-term N addition of different rates (0, 1.75, 5.25, 10.5, 17.5, and 28 g N m?2 yr?1) in a typical steppe of the Inner Mongolia Grassland were investigated using quantitative real-time PCR, cloning and sequencing based on amoA gene. In addition, soil potential ammonia oxidation rate was analyzed. Our results demonstrated that, with the increase of nitrogen addition rate, soil pH declined gradually from 6.6 to 4.9, and potential ammonia oxidation rate also declined which was positively correlated with soil pH (P < 0.01), while the copy number of bacterial amoA gene increased and positively (P < 0.01) correlated with ammonia concentration in soil. The archaeal amoA gene copy number did not change a lot with N nitrogen addition rate below 10.5 g N/m2, but significantly decreased with addition of 17.5 and 28 g N m?2 yr?1. Sequencing of clone libraries of treatments revealed that in the treatment without N addition, AOB was dominated by Cluster 3a1 of Nitrosospira with a proportion of 87%, while in the treatment with N addition of 28 g N m?2 yr?1, proportion of Cluster 2 increased significantly to 41%. All archaeal amoA sequences were affiliated with the soil/sediment clade, and no significant variation of community structure was found between the treatments without N addition and with 28 g N m?2 yr?1 addition rate. In conclusion, this study demonstrated significant effects of nitrogen addition on potential ammonia oxidation rate and compositions of ammonia-oxidation microorganisms, which may have important implications for evaluating the impacts of N accumulation on ecosystem functioning. Further, the effects of pH and ammonia concentration on the ammonia oxidation rate and compositions of ammonia-oxidation microorganisms were discussed.  相似文献   

12.
The increase in concentration of ammonia in lake water during the degradation of algal blooms may last for several weeks and thus cause chronic toxicity to aquatic organisms. The purpose of this study was to assess the chronic toxicity of ammonia on the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Juvenile crucian carp were exposed in different ammonia solutions for 45 days and then immediately transferred to pristine freshwater to initiate a 15-day recovery period. Results showed sub-lethal ammonia significantly deters growth and a 15-day recovery period was not sufficient for the fish to compensate for the loss of growth. The fish exhibited a continuous decrease in red blood cell (RBC), the total hemoglobin (Hb), and gill Na+/K+ ATPase activity as the concentration of NH3-N increased. After the 15-day recovery period, RBC, Hb, and gill Na+/K+ ATPase activity had recovered to similar levels as the controls.  相似文献   

13.
The contribution of agriculture to the sustainable development goals requires climate-smart and profitable farm innovations. Increasing the ammonia fertilizer applications to meet the global food demands results in high agricultural costs, environmental quality deterioration, and global warming, without a significant increase in crop yield. Here, we reported that a third microbial ammonia oxidation process, complete ammonia oxidation (comammox), is contributing to a significant ammonia fertilizer loss (41.9 ± 4.8%) at the rate of 3.53 ± 0.55 mg N kg−1 day−1 in agricultural soils around the world. The contribution of comammox to ammonia fertilizer loss, occurring mainly in surface agricultural soil profiles (0–0.2 m), was equivalent to that of bacterial ammonia oxidation (48.6 ± 4.5%); both processes were significantly more important than archaeal ammonia oxidation (9.5 ± 3.6%). In contrast, comammox produced less N2O (0.98 ± 0.44 μg N kg−1 day−1, 11.7 ± 3.1%), comparable to that produced by archaeal ammonia oxidation (16.4 ± 4.4%) but significantly lower than that of bacterial ammonia oxidation (72.0 ± 5.1%). The efficiency of ammonia conversion to N2O by comammox (0.02 ± 0.01%) was evidently lower than that of bacterial (0.24 ± 0.06%) and archaeal (0.16 ± 0.04%) ammonia oxidation. The comammox rate increased with increasing soil pH values, which is the only physicochemical characteristic that significantly influenced both comammox bacterial abundance and rates. Ammonia fertilizer loss, dominated by comammox and bacterial ammonia oxidation, was more intense in soils with pH >6.5 than in soils with pH <6.5. Our results revealed that comammox plays a vital role in ammonia fertilizer loss and sustainable development in agroecosystems that have been previously overlooked for a long term.  相似文献   

14.
15.
Nitrogen accumulation in soil is increasing in Inner Mongolia which is resulted mainly from fertilization accompanied by conversion of large area of grasslands to croplands. Ammonia-oxidation is the key step of nitrification which is driven by ammonia-oxidizing microorganisms, and study on the response of ammonia-oxidizing microorganisms is necessary for understanding the effects of nitrogen fertilization on ecosystem functions. In this study, the abundance and community structure of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) under long-term N addition of different rates (0, 1.75, 5.25, 10.5, 17.5, and 28 g N m?2 yr?1) in a typical steppe of the Inner Mongolia Grassland were investigated using quantitative real-time PCR, cloning and sequencing based on amoA gene. In addition, soil potential ammonia oxidation rate was analyzed. Our results demonstrated that, with the increase of nitrogen addition rate, soil pH declined gradually from 6.6 to 4.9, and potential ammonia oxidation rate also declined which was positively correlated with soil pH (P < 0.01), while the copy number of bacterial amoA gene increased and positively (P < 0.01) correlated with ammonia concentration in soil. The archaeal amoA gene copy number did not change a lot with N nitrogen addition rate below 10.5 g N/m2, but significantly decreased with addition of 17.5 and 28 g N m?2 yr?1. Sequencing of clone libraries of treatments revealed that in the treatment without N addition, AOB was dominated by Cluster 3a1 of Nitrosospira with a proportion of 87%, while in the treatment with N addition of 28 g N m?2 yr?1, proportion of Cluster 2 increased significantly to 41%. All archaeal amoA sequences were affiliated with the soil/sediment clade, and no significant variation of community structure was found between the treatments without N addition and with 28 g N m?2 yr?1 addition rate. In conclusion, this study demonstrated significant effects of nitrogen addition on potential ammonia oxidation rate and compositions of ammonia-oxidation microorganisms, which may have important implications for evaluating the impacts of N accumulation on ecosystem functioning. Further, the effects of pH and ammonia concentration on the ammonia oxidation rate and compositions of ammonia-oxidation microorganisms were discussed.  相似文献   

16.
We hypothesized that the skin acts as an extrabranchial route for ammonia excretion in adult rainbow trout (Oncorhynchus mykiss) following high environmental ammonia (HEA) exposure. Trunks of control or HEA-exposed trout were perfused with saline containing 0 or 1 mmol l−1 NH4+. Cutaneous ammonia excretion rates increased 2.5-fold following HEA exposure, however there was no difference in rates between trunks perfused with 0 or 1 mmol l−1 NH4+. The skin is therefore capable of excreting its own ammonia load, but it does not clear circulating ammonia from the plasma.  相似文献   

17.
Ammonia in estuaries and effects on fish   总被引:3,自引:0,他引:3  
This review aims to explore the biological responses of fish in estuaries to increased levels of environmental ammonia. Results from laboratory and field studies on responses of fish to varying salinity and their responses increased ammonia will be evaluated, although studies which examine responses to ammonia, in relation to varying salinity, pH and temperature together are rare. In a survey of British estuaries the continuous measurement of total ammonia showed values that ranged from background levels increasing up to c. 10 mg N l?1 although higher values have been noted sporadically. In outer estuaries pH values tended to stabilize towards sea water values (e.g. c. pH 8). Upper reaches of estuaries are influenced by the quality of their fresh waters sources which can show a wide range of pH and water quality values depending on geological, climatic and pollution conditions. In general the ammonia toxicity (96 h LC50) to marine species (e.g. 0·09–3·35 mg l?1 NH3) appears to be roughly similar to freshwater species (e.g. 0·068–2·0 mg l?1 NH3). Ammonia toxicity is related to differences between species and pH rather than to the comparatively minor influences of salinity and temperature. In the marine environment the toxicity of ionized ammonia should be considered. The water quality standard for freshwater salmonids of 21 μg l?1 NH3–N was considered to be protective for most marine fish and estuarine fish although the influence of cyclical changes in pH, salinity and temperature were not considered. During ammonia exposures, whether chronic or episodic, estuarine fish may be most at risk as larvae or juveniles, at elevated temperatures, if salinity is near the seawater value and if the pH value of the water is decreased. They are also likely to be at risk from ammonia intoxication in waters of low salinity, high pH and high ammonia levels. These conditions are likely to promote ammonia transfer from the environment into the fish, both as ionized and unionized ammonia, as well as promoting ammonia retention by the fish. Fish are more likely to be prone to ammonia toxicity if they are not feeding, are stressed and if they are active and swimming. Episodic or cycling exposures should also be considered in relation to the rate at which the animal is able to accumulate and excrete ammonia and the physiological processes involved in the transfer of ammonia. In the complex environment of an estuary, evaluation of ammonia as a pollutant will involve field and laboratory experiments to determine the responses of fish to ammonia as salinity and temperature vary over a period of time. It will also be necessary to evaluate the responses of a variety of species including estuarine residents and migrants.  相似文献   

18.
Denitrification and Ammonia Formation in Anaerobic Coastal Sediments   总被引:23,自引:18,他引:5       下载免费PDF全文
Simultaneous determinations of nitrogen gas production, ammonia, and particulate organic nitrogen formation in the coastal sediments of Mangoku-Ura, Simoda Bay, and Tokyo Bay were made by using the 15N-label tracer method. The rate of nitrogen gas production in the sediment surface layer was about 10−2 μg atom of N per g per h, irrespective of the location of the sediments examined. [15N]ammonia and -particulate organic nitrogen accounted for 20 to 70% of the three products, and after several hours of incubation, the major fraction of nondenitrified 15N in Mangoku-Ura and Simoda Bay sediments was recovered as ammonia. In Tokyo Bay sediments, particulate organic nitrogen was produced at a greater rate than was ammonia. The reduction rate data suggest that the pathway of nitrate reduction to ammonia is important in coastal sediments.  相似文献   

19.
曝气充氧条件下污染河道氨挥发特性模拟   总被引:3,自引:0,他引:3  
刘波  王文林  凌芬  王国祥  杜旭  周锋  许宽  夏劲 《生态学报》2012,32(23):7270-7279
以污染河道为研究对象,模拟研究污染河道在曝气充氧(底泥曝气,ES组;水曝气,EW组)条件下氨挥发的特性,探讨主要影响因素及其作用过程.研究表明,污染河道水体具有一定氨挥发潜力,在实验室模拟条件下,氨挥发速率平均为2.51mg·m-2·h-1,相当于0.50 kgN· hm-2·d-1;曝气污染河道水体的氨挥发有一定的促进作用,与对照相比(EC组)氨挥发速率和累积氨挥发量存在显著差异(P< 0.05);不同曝气方式对氨挥发过程影响不同,氨挥发速率存在显著差异(P<0.05);至实验结束,EW组的累积挥发量为2809.76 mg/m2,分别是ES组和EC组的1.17和2.25倍;各实验组的氨挥发累积量用一级动力学方程能很好地拟合,根据模型可以预测氨挥发量;同一温度条件下,pH值、铵氮浓度和通气频率是影响氨挥发的主要因素;曝气可以通过增加通气频率和提高水体pH值来促进氨挥发进行;在曝气作用下随着硝化过程的进行对氨挥发有一定的限制作用;曝气条件下,氨挥发作用在硝化过程启动阶段最为明显.  相似文献   

20.
Biochar is produced as a by-product of the low temperature pyrolysis of biomass during bioenergy extraction and its incorporation into soil is of global interest as a potential carbon sequestration tool. Biochar influences soil nitrogen transformations and its capacity to take up ammonia is well recognized. Anthropogenic emissions of ammonia need to be mitigated due to negative environmental impacts and economic losses. Here we use an isotope of nitrogen to show that ammonia-N adsorbed by biochar is stable in ambient air, but readily bioavailable when placed in the soil. When biochars, containing adsorbed 15N labelled ammonia, were incorporated into soil the 15N recovery by roots averaged 6.8% but ranged from 26.1% to 10.9% in leaf tissue due to differing biochar properties with plant 15N recovery greater when acidic biochars were used to capture ammonia. Recovery of 15N as total soil nitrogen (organic+inorganic) ranged from 45% to 29% of 15N applied. We provide a proof of concept for a synergistic mitigation option where anthropogenic ammonia emissions could be captured using biochar, and made bioavailable in soils, thus leading to nitrogen capture by crops, while simultaneously sequestering carbon in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号