首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the conformation of several structural analogues of norephedrine, thiophene, carbazole and furan, were carried out using the differential PCILO method. The erythro-forms of these compounds possess minima on the conformation map corresponding to a gauche conformation with synclinal H-atoms. This result is in good agreement with the proton-proton coupling constants found in previous NMR-studies. 1H-NMR-studies suggest for the threo-isomers of the studied molecules an equilibrium between the trans- and gache-conformations of the ethanolamine chain. Present calculations agree fairly well with this result. All the studied molecules possess conformational minima corresponding to the folded form of the side chain believed responsible for the physiological activity of norephedrine. The distances between ‘N’ and ‘O’ atoms in this preferred conformation correspond to the model proposed by Kier and Pullman for α-adrenergic receptors.  相似文献   

2.
It is important to understand the conformational biases that are present in unfolded states to understand protein folding. In this context, it is surprising that even a short tripeptide like AFA samples folded/ordered conformation as demonstrated recently by NMR experiments of the peptide in aqueous solution at 280 K. In this paper, we present molecular dynamics simulation of the peptide in explicit water using OPLS-AA/L all-atom force field. The results are in overall agreement with NMR results and provide some further insights. The peptide samples turn and extended conformational forms corresponding to minima in free energy landscape. Frequent transitions between the minima are observed due to modest free energy barriers. The turn conformation seems to be stabilized by hydrophobic interactions and possibly by bridging water molecules between backbone donors and acceptors. Thus the peptide does not sample conformations randomly, but samples well defined conformations. The peptide served as a model for folding-unfolding equilibrium in the context of peptide folding. Further, implications for drug design are also discussed.  相似文献   

3.
4.
The conformational models of the active site of adenosine deaminase (ADA) and its complexes in the basic state with adenosine and 13 isosteric analogues of the aza, deaza, and azadeaza series were constructed. The optimization of the conformational energy of the active site and the nucleoside bound with it in the complex was achieved in the force field of the whole enzyme (the 1ADD structure was used) within the molecular mechanics model using the AMBER 99 potentials. The stable conformational states of each of the complexes, as well as the optimal conformation of the ADA in the absence of ligand, were determined. It was proved that the conformational state that is close to the structure of the ADA complex with 1-deazaadenosine (1ADD) known from the X-ray study corresponds to one of the local minima of the potential surface. Another, a significantly deeper minimum was determined; it differs from the first minimum by the mutual orientation of side chains of amino acid residues. A similar conformational state is optimal for the ADA active site in the absence of the bound ligand. A qualitative correlation exists between the values of potential energies of the complexes in this conformation and the enzymatic activity of ADA toward the corresponding nucleosides. The dynamics of conformational conversions of the active site after the binding of substrate or its analogues, as well as the possibility of the estimation of the inhibitory properties of nucleosides on the basis of calculations, are discussed.  相似文献   

5.
Structural properties of biomolecules are dictated by their intrinsic conformational energetics in combination with environmental contributions. Calculations using high-level ab initio methods on the deoxyribonucleosides have been performed to investigate the influence of base on the intrinsic conformational energetics of nucleosides. Energy minima in the north and south ranges of the deoxyribose pseudorotation surfaces have been located, allowing characterization of the influence of base on the structures and energy differences between those minima. With all bases, chi values associated with the south energy minimum are lower than in canonical B-DNA, while chi values associated with the north energy minimum are close to those in canonical A-DNA. In deoxycytidine, chi adopts an A-DNA conformation in both the north and south energy minima. Energy differences between the A and B conformations of the nucleosides are <0.5 kcal/mol in the present calculations, except with deoxycytidine, where the A form is favored by 2.3 kcal/mol, leading the intrinsic conformational energetics of GC basepairs to favor the A form of DNA by 1.5 kcal/mol as compared with AT pairs. This indicates that the intrinsic conformational properties of cytosine at the nucleoside level contribute to the A form of DNA containing predominately GC-rich sequences. In the context of a B versus Z DNA equilibrium, deoxycytidine favors the Z form over the B form by 1.6 kcal/mol as compared with deoxythymidine, suggesting that the intrinsic conformational properties of cytosine also contribute to GC-rich sequences occurring in Z DNA with a higher frequency than AT-rich sequences. Results show that the east pseudorotation energy barrier involves a decrease in the furanose amplitude and is systematically lower than the inversion barrier, with the energy differences influenced by the base. Energy barriers going from the south (B form) sugar pucker to the east pseudorotation barrier are lower in pyrimidines as compared with purines, indicating that the intrinsic conformational properties associated with base may also influence the sugar pseudorotational population distribution seen in DNA crystal structures and the kinetics of B to A transitions. The present work provides evidence that base composition, in addition to base sequence, can influence DNA conformation.  相似文献   

6.
The crystal structure of 6-furfurylaminopurine (kinetin) was determined from three-dimensional x-ray diffraction data. The N6-substituent is distal to the imidazole ring. The molecules are linked across centers of inversion by pairs of N(6)-H···N(7) and N(9)-H···N(3) hydrogen bonds, utilizing the Hoogsteen sites for base pairing. From an analysis of the conformational preferences of cytokinins, an “active conformation” favourable for eliciting maximal cytokinin activity is proposed. The loss of cytokinin activity due to various chemical modifications such as the substitution at N1, alteration of the methylene bridge, is correlated to the inability of cytokinins to achieve the active conformation.  相似文献   

7.
Conformational models of the active site of adenosine deaminase (ADA) and its complexes in the basic state with adenosine and 13-isosteric analogues of the aza, deaza, and azadeaza series were constructed. The optimization of the conformational energy of the active site and the nucleoside bound with it in the complex was achieved in the force field of the whole enzyme [the structure of ADA complex with 1-deazaadenosine (1ADD) was used] within the molecular mechanics model using the AMBER 99 potentials. The stable conformational states of each of the complexes, as well as the optimal conformation of ADA in the absence of ligand, were determined. It was proved that the conformational state that is close to the structure of the ADA complex with 1ADD known from X-ray study corresponds to one of the local minima of the potential surface. Another, a significantly deeper minimum was determined; it differs from the first minimum by the mutual orientation of side chains of amino acid residues. A similar conformational state is optimal for the ADA active site in the absence of bound ligand. A qualitative correlation exists between the values of potential energies of the complexes in this conformation and the enzymatic activity of ADA toward the corresponding nucleosides. The dynamics of conformational conversions of the active site after the binding of substrate or its analogues, as well as the possibility of the estimation of the inhibitory properties of nucleosides on the basis of calculations, are discussed.  相似文献   

8.
αD -N-acetyl neuraminic acid (Neu5Ac, sialic acid) is a commonly occurring carbohydrate residue in various cell surface glycolipids and glycoproteins. This residue is linked terminally or internally to Gal residues via an α(2 → 3) or α(2 → 6) linkage. In the cell surface receptor, sialyl-LewisX, a terminal α(2 → 3) linkage is present. Previous studies from our laboratory have shown that in solution LewisX adopts a relatively rigid structure. In order to model the Neu5Ac residue, vacuum molecular dynamics of this monosaccharide were compared with simulations that explicitly include solvent water. The dynamical average of the monosaccharide conformation obtained from the two simulations was similar. Vacuum calculations for the disaccharide Neu5Ac α(2 → 3) Gal β-O-methyl show that a number of low energy minima are accessible to this disaccharide. Molecular dynamics simulations starting from the low energy minima show conformational transitions with a time scale of 10–50 ps among several of the minima while large barriers between other minima prevent transitions on the time scale studied. Simulations of this disaccharide in the presence of solvent show fewer conformational transitions, illustrating a dampening effect of the solvent that has been observed in some other studies. Our results are most consistent with an equilibrium among multiple conformations for the Neu5Ac α(2 → 3) Gal β linkage. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
A set of empirical potential functions (EPF), previously used in conformational energy calculations of polymers, was employed in the study of the conformational properties of a number of methyl-substituted phenethylmines, as well as phenylmethylamine, phenyl-n-propylamine, and 3,4,5-trimethoxyamphetamine. The conformational free energy was computed for each of these molecular species in four states: neutral charge-vacuo (I), neutral charge-aqueous solution (II), positive charge-vacuo (III), positive charge-aqueous solution (IV). The molecules generally adopt one of two stable conformations: a folded conformation with the amine chain perpendicular to the ring, and the amine group nearest to the ring; and an extended conformation with the amine chain perpendicular to the ring, and the amine group far from the ring. The folded conformation is usually preferred for states I, II and III, while the extended form is adopted for state IV. By using empirical potential functions it was also possible to calculate the conformational entropies associated with the minimum energy conformations, thereby allowing the Boltzmann probabilities to be determined. These probabilities are a measure of the population density of each of the various low energy regions. Some of the molecules studied have a steric “bulge” below the plane of the benzene ring. All of the compounds studied which possess this “bulge” are psychotropically inactive, and, in most cases, also pharmacologically inactive. All active compounds studied do not possess this “bulge”.  相似文献   

10.
An algorithm for locating the region in conformational space containing the global energy minimum of a polypeptide is described. Distances are used as the primary variables in the minimization of an objective function that incorporates both energetic and distance-geometric terms. The latter are obtained from geometry and energy functions, rather than nuclear magnetic resonance experiments, although the algorithm can incorporate distances from nuclear magnetic resonance data if desired. The polypeptide is generated originally in a space of high dimensionality. This has two important consequences. First, all interatomic distances are initially at their energetically most favorable values; i.e. the polypeptide is initially at a global minimum-energy conformation, albeit a high-dimensional one. Second, the relaxation of dimensionality constraints in the early stages of the minimization removes many potential energy barriers that exist in three dimensions, thereby allowing a means of escaping from three-dimensional local minima. These features are used in an algorithm that produces short trajectories of three-dimensional minimum-energy conformations. A conformation in the trajectory is generated by allowing the previous conformation in the trajectory to evolve in a high-dimensional space before returning to three dimensions. The resulting three-dimensional structure is taken to be the next conformation in the trajectory, and the process is iterated. This sequence of conformations results in a limited but efficient sampling of conformational space. Results for test calculations on Met-enkephalin, a pentapeptide with the amino acid sequence H-Tyr-Gly-Gly-Phe-Met-OH, are presented. A tight cluster of conformations (in three-dimensional space) is found with ECEPP energies (Empirical Conformational Energy Program for Peptides) lower than any previously reported. This cluster of conformations defines a region in conformational space in which the global-minimum-energy conformation of enkephalin appears to lie.  相似文献   

11.
The conformational preference of the disaccharide alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----OMe) (1) about the glycosidic torsion angles, phi and psi, was studied by NMR NOESY spectroscopy and molecular mechanics calculations. The NOE data were consistent with either of two distinct conformations close to minima on a calculated phi/psi potential energy surface. Starting from the lowest energy conformation, a 1-ns molecular dynamics (MD) trajectory was computed in vacuo, from which the NOE curves were simulated and compared to the experimentally observed NOESY data.  相似文献   

12.
Conformational energy calculations using an Empirical Conformational Energy Program for Peptides (ECEPP) were carried out on the N-acetyl-N′-methylamides of Pro-X, where X = Ala, Asn, Asp, Gly, Leu, Phe, Ser, and Val, and of X-Pro, where X = Ala, Asn, Gly, and Pro. The conformational energy was minimized from starting conformations which included all combinations of low-energy single-residue minima and several standard bend structures. It was found that almost all resulting minima are combinations of low-energy single-residue minima, suggesting that intra residue interactions predominate in determining conformation. The calculations also indicate, however, that inter residue interactions can be important. In addition, librational entropy was found to influence the relative stabilities of some minima. Because of the existence of 10–100 low-energy minima for each dipeptide, the normalized statistical weight of an individual minimum rarely exceeds 0.3, suggesting that these dipeptides have considerable conformational flexibility and exist as statistical ensembles of low-energy structures. The propensity of each dipeptide to form bend conformations was calculated, and the results were compared with available experimental data. It was found that bends are favored in Pro-X dipeptides because ?Pro is fixed by the pyrrolidine ring in a conformation which is frequently found in bends, but that bends are not favored in X-Pro dipeptides because interactions between the X residue and the pyrrolidine ring restrict the X residue to conformations which are not usually found in bends.  相似文献   

13.
It is hard to construct theories for the folding of globular proteins because they are large and complicated molecules having enormous numbers of nonnative conformations and having native states that are complicated to describe. Statistical mechanical theories of protein folding are constructed around major simplifying assumptions about the energy as a function of conformation and/or simplifications of the representation of the polypeptide chain, such as one point per residue on a cubic lattice. It is not clear how the results of these theories are affected by their various simplifications. Here we take a very different simplification approach where the chain is accurately represented and the energy of each conformation is calculated by a not unreasonable empirical function. However, the set of amino acid sequences and allowed conformations is so restricted that it becomes computationally feasible to examine them all. Hence we are able to calculate melting curves for thermal denaturation as well as the detailed kinetic pathway of refolding. Such calculations are based on a novel representation of the conformations as points in an abstract 12-dimensional Euclidean conformation space. Fast folding sequences have relatively high melting temperatures, native structures with relatively low energies, small kinetic barriers between local minima, and relatively many conformations in the global energy minimum's watershed. In contrast to other folding theories, these models show no necessary relationship between fast folding and an overall funnel shape to the energy surface, or a large energy gap between the native and the lowest nonnative structure, or the depth of the native energy minimum compared to the roughness of the energy landscape. Proteins 32:425–437, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
In order to search for probable conformations of the peptide, the amino acid side chain, and the carbohydrate linkage in glycoproteins, conformational energy surfaces of glycopeptide model compounds were studied by Monte Carlo methods using the Metropolis algorithm. The potential energies were composed of empirical energy functions which include nonbonded interactions, electrostatics, hydrogen bonding, and torsional energies specified by parameters which have been used for peptides. Calculations were performed on 1-N-acetyl-2-acetamido-beta-D-glucopyranosyl amine and the glycosylated dipeptide N-acetyl-delta-N-(2-acetamido-beta-D-glucopyranosyl)-L-asparaginyl-N'-methyl amide as models for N-glycosylated peptides and on methyl-2-acetamido-alpha-D-galactopyranoside as well as the glycosylated dipeptides N-acetyl-gamma-O-(2-acetamido-alpha-D-galactopyranosyl)-L-threonyl-N'-methyl amide and its seryl analog as models for O-glycosylated glycoproteins. The probable conformations of these compounds were analyzed by single-angle probability tables and by two-dimensional conformation density maps projected from the Markov chains which contained up to six independently varied conformational dihedral angles. The presence of high barriers to rotation required the use of search strategies which resulted in a rather low acceptance rate for new conformations in the Metropolis algorithm in order to avoid trapping of the Markov chain in local energy minima. This problem contributed to the failure of these calculations to attain complete convergence to the thermodynamic limit for the glycosylated dipeptide models in which six dihedral angles were independently varied. Analysis of the results shows that the conformational space available to the highly crowded axial glycosides of the alpha-O-GalNAc type is much more restricted than that for the N-asparaginyl glycopeptides. The most probable conformation for the O-glycosylated peptides is is a beta-turn while N-glycosylated peptides may be either in a beta-turn or an extended conformation.  相似文献   

15.
H Monoi 《Biophysical journal》1993,65(5):1828-1836
If an infinitely long polymer has a primary structure characterized by an N-residue periodicity, a minimum energy conformation of the polymer under the constraint of the conformational N-residue periodicity corresponds to an equilibrium structure (energy minimal or unstable equilibrium structure) when this constraint is absent. Molecular mechanics calculations showed that with an infinitely long poly-(L,D)-alanine single-stranded beta 6.3-helix (which has a 2-residue periodicity with respect to the primary structure), its lowest energy conformation within the framework of the conformational 2-residue periodicity is also the lowest energy form of this beta 6.3-helix even when no conformational periodicity is assumed. In the course of this study, contour maps of helix parameters and conformation energies for beta structures of poly-(L,D)-alanine were examined. It was also found that beta 6.3-, beta 4.5-, alpha L,D-, and tau L,D-helices constitute the global minima in the whole conformational space of this polypeptide. In the present calculation, an improved formulation of the conformation energy was introduced to estimate the structure and conformation energy of an infinite periodic chain from results on a chain of finite length.  相似文献   

16.
C Mukhopadhyay  C A Bush 《Biopolymers》1991,31(14):1737-1746
Molecular dynamics simulations without explicit inclusion of solvent molecules have been performed to study the motions of Lewisa and Lewisb blood group oligosaccharides, and two blood group A tetrasaccharides having type I and type II core chains. The blood group H trisaccharide has also been studied and compared with the blood group A type II core chain. The potential energy surface developed by Rasmussen and co-workers was used with the molecular mechanics code CHARMM. The lowest energy minima of the component disaccharide fragments were obtained from conformational energy mapping. The lowest energy minima of these disaccharide fragments were used to build the tri- and tetrasaccharides that were further minimized before the actual heating/equilibration and dynamics simulations. The trajectories of the disaccharide fragments, e.g., Fuc alpha- (1----4)GlcNAc, Gal beta-(1----4)GlcNAc, etc., show transitions among various minima. However, the oligosaccharides were found to be dynamically stable and no transitions to other minimum energy conformations were observed in the time series of the glycosidic dihedral angles even during trajectories as long as 300 ps. The stable conformations of the glycosidic linkages in the oligosaccharides are not necessarily the same as the minimum energy conformation of the corresponding isolated disaccharides. The average fluctuations of the glycosidic angles in the oligosaccharides were well within the range of +/- 15 degrees. The results of these trajectory calculations were consistent with the relatively rigid single-conformation models derived for these oligosaccharides from 1H-nmr data.  相似文献   

17.
A series of three homologous dimethyldiamides Ac-(Z)-deltaPhe-NMe2, Ac-L-Phe-NMe2 and Ac-DL-Phe-NMe2 have been synthesized and their structures determined from single-crystal X-ray diffraction data. To learn more about the conformational preferences of the compounds studied, the fully relaxed phi, psi conformational energy maps on the free molecules of Ac-deltaAla-NMe2 and Ac-(Z)-deltaPhe-NMe2 were obtained with the HF/3-21G method and the calculated minima re-optimized with the DFT/B3LYP/6-31G** method. The crystal state results have been compared with the literature data. The studied dimethyldiamide Ac-deltaXaa-NMe2 combines the double bond in positions alpha, beta and the C-terminal tertiary amide within one molecule. As the representative probe with deltaXaa = deltaAla, (Z)-deltaLeu and (Z)-deltaPhe shows, in the solid state they adopt the conservative conformation with phi, psi approximately -45 degrees, approximately 130 degrees and with a non-planar tertiary amide bond, whatever the packing forces are. This conformation is located on the Ramachandran map in region H/F, which is of high-energy for common amino acids, but not so readily accessible to them. The free molecule calculations on Ac-deltaAla-NMe2 and Ac-(Z)-deltaPhe-NMe2 reveal that, in spite of dissimilar overall conformational profiles of these molecules, this structure is one of their low-energy conformers and for Ac-(Z)-deltaPhe-NMe2 it constitutes the global minimum. So, the theoretical results corroborate those experimental results proving that this structure is robust enough to avoid conformational distortion due to packing forces. In contrast to Ac-deltaXaa-NMe2, the saturated Ac-L/DL-Xaa-NMe2 shows the constancy of the associative patterns but do not prefer any molecular structure in the solid state.  相似文献   

18.
The structural stability of halocarbonyl azides CXO-NNN (X=F, Cl and Br) was investigated by DFT and MP2 calculations using the 6-311++G** basis set. From the calculations, the molecules were found to have an s-cis<--> s-trans conformational equilibrium with cis being the lower -energy form. Full energy optimizations were carried out for the transition states and the minima at the B3LYP/6 -311++G** and MP2/6 -311++G** levels, from which the rotational barriers were calculated to be of the order 8-10 kcal x mol(-1). The vibrational frequencies were computed at the DFT -B3LYP level and the vibrational assignments for the normal modes of the stable conformers were made on the basis of normal coordinate calculations.  相似文献   

19.
Hydroxylation of 19-hydroxyandrost-4-ene-3,17-dione (19OHA) by aromatase occurs at the 19-pro-R hydrogen, suggesting that the C19 group has a preferred conformation in the enzyme active site. X-ray crystallographic studies have led to a postulate that the steroid plays a role in determining this conformation. In an effort to quantitate the steroid's role, we estimated conformational constraints about the C10-C19 bond of 19OHA using molecular mechanics calculations. Rotational barriers less than or equal to 6 kcal/mol and energy differences between conformers less than or equal to 1 kcal/mol were found. We perturbed these conformational constraints by preparing an altered substrate, 19-hydroxyandrosta-4,6-diene-3,17-dione (19OHAD). The stereospecificity of aromatization for 19OHA and 19OHAD was found to be the same. Thus, theoretical and experimental approaches both indicate that conformational constraints intrinsic to 19OHA cannot be a major determinant in the sterospecificity of its oxidation by aromatase.  相似文献   

20.
Quantum chemical calculations of conformational maps of the molecule of a new virostatic agent (S)-9-(2,3-dihydroxypropyl)adenine were performed. The thermodynamically most advantageous conformation I corresponds, for the D-series, to the alpha-ribo configuration, while the following minima, which are close in energy (II,III), correspond to beta-ribo and beta-xylo configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号