首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth.  相似文献   

2.
艾滋病自发现以来在全球范围内迅速蔓延,危害性极高,目前广泛采用的高效抗逆转录病毒疗法(HAART)虽能够显著提高HIV-1感染者生活质量,但存在着价格昂贵,耐药和副作用的问题经常会导致HAART治疗的中断。要获得长期持续的抗病毒治疗效果还有待于研发新的抗病毒药物和治疗方法。近年来随着分子生物技术、干细胞研究、纳米技术等相关技术的发展,关于抗HIV-1基因治疗方法的研究受到了广泛关注。主要针对基于RNA的抗HIV-1基因治疗方法,包括反义RNA、核酶、RNA诱饵以及RNA干扰技术在抗HIV-1基因治疗方面进行综述。研究表明,以RNA为基础的抗HIV-1基因治疗方法有望成为传统治疗方法的一种有效辅助手段。  相似文献   

3.
We discuss the problem of the evolution of the cellular communication system from the RNA world to progenote to the modern cell. Our method analyses syntactical structure of molecular fossils in the non-coding regions of DNA within the information-processing gene model developed earlier. We concluded that sequence-specific binding is an ancient communication process with its origin in the RNA world. Moreover, we illustrate our viewpoint using four evolution snapshots from the first RNA segments, some 4.1 billion years ago, to the first cell, 3.8 billion years ago.  相似文献   

4.
We report an RNA molecule that exhibits activity analogous to that of alcohol dehydrogenase (ADH). Directed in vitro evolution was used to enrich nicotinamide adenine dinucleotide (NAD+)-dependent redox-active RNAs from a combinatorial pool. The most active ribozyme in the population forms a compact pseudoknotted structure and oxidizes an alcohol seven orders of magnitude faster than the estimated spontaneous rate. Moreover, this ADH RNA was coupled with a redox relay between NADH and flavin adenine dinucleotide to give a NAD+-regeneration system. Our demonstration of the redox ability of RNA adds support to an RNA-based metabolic system in ancient life.  相似文献   

5.
Can we look at contemporary biology and couple this with chemical insight to propose some plausible mechanisms for the origin of life on the planet? In what follows, we examine some promising chemical reactions by which the building blocks for nucleic acids might have been created about a billion years after the Earth formed. This could have led to self-assembling systems that were based on an all-RNA metabolism, where RNA is both catalytic and informational. We consider the breadth of RNA enzymes presently existing in biology, and to what extent these might have covered a wider range of chemistry in the RNA world. Ultimately, the RNA world would probably have given way to protein-based life quite quickly, and the origins of peptidyl transferase activity are discussed below.  相似文献   

6.
Fossils of the oldest microorganisms exist in 3.5 billion year old rocks and there is indirect evidence that life may have existed 3.8 billion years ago (3.8 Ga). Impacts able to destroy life or interrupt prebiotic chemistry may have occurred after 3.5 Ga. If large impactors vaporized the oceans, sterilized the planets, and interfered with the origination of life, life must have originated in the time interval between these impacts which increased with geologic time. Therefore, the maximum time required for the origination of life is the time that occurred between sterilizing impacts just before 3.8 Ga or 3.5 Ga, depending upon when life first appeared on Earth. If life first originated 3.5 Ga, and impacts with kinetic energies between 2×1034 and 2×1035 were able to vaporize the oceans, using the most probable impact flux, we find that the maximum time required to originate life would have been 67 to 133 million years (My). If life first originated 3.8 Ga, the maximum time to originate life was 2.5 to 11 My. Using a more conservative estimate for the flux of impacting objects before 3.8 Ga, we find a maximum time of 25 My for the same range of impactor kinetic energies. The impact model suggests that it is possible that life may have originated more than once.  相似文献   

7.
A primeval anoxygenic terrestrial atmosphere having been postulated on astronomical grounds, experiments using simulated conditions have shown that the formation of organic molecules by abiogenic processes with proceed freely in such an environment.Atmospheric oxygen will at first be limited to 0.001 PAL through the Urey mechanism which inhibits further dissociation of water above this level. All atmospheric oxygen exceeding this level must be biogenic and produced by photosynthesis. Molecular fossils prove its existence 2.7 billion years ago. Sedimentary ores, notably pyrite sands of gold-uranium reefs and banded iron formations, attest to the existence of an atmosphere with little oxygen up to 1.8 billion years ago. Geochemistry does not, howerver, supply us with data as to the level of oxygen at that time. The Pasteur Point, on the other hand, at which microbes change from fermentation to respiration and vice versa, is a powerful regulating factor situated at 0.01 PAL of free oxygen.It is postulated that the primeval atmosphere of Lower and Middle Precambrian was limited to this level of free oxygen. At this level pre-life — the formation of organic compounds through inorganic processes — still exists. Pre-life and early life therefore were coexistent for two billion years at least, and were able to influence each, other over all this time. The primeval, atmosphere was definitely superseded by an oxygenic one about 1.45 billion years ago, but the level of 0.1 PAL of free oxygen was only reached during the Ordovician, 0.4–0.5 billion years ago.  相似文献   

8.
A recent study(1) of sequence data from many different proteins has suggested that contemporary prokaryotes and eukaryotes may have shared a common ancestor as recently as 2 billion years ago (the molecular clock). Strong evidence from the geological record, however, indicates that oxygen-producing microorganisms, perhaps similar to modern cyanobacteria, existed 3.5 billion years ago. The fossil evidence, therefore, suggests that any common ancestor of prokaryotes and eukaryotes must have existed at least 1.5 billion years earlier than suggested by the molecular clock evidence. The discrepancy between molecular and geological evidence for the age of modern cells is considered here, as are aspects of gene descent in the tree of life that might help to account for it.  相似文献   

9.

Background  

Cyanobacteria are one of the oldest and morphologically most diverse prokaryotic phyla on our planet. The early development of an oxygen-containing atmosphere approximately 2.45 - 2.22 billion years ago is attributed to the photosynthetic activity of cyanobacteria. Furthermore, they are one of the few prokaryotic phyla where multicellularity has evolved. Understanding when and how multicellularity evolved in these ancient organisms would provide fundamental information on the early history of life and further our knowledge of complex life forms.  相似文献   

10.
The poly(A) segment increases in length as the complexity of the organism increases. The shortest poly(A) size (10–15 AMP units) exist on mRNA from bacteria. The largest poly(A) segments (180–200 AMP units) exist in highly differentiated tissue. The natural log of average poly(A) size has evolved in a linear manner with the time of evolution of different organisms. This relationship places the origin of mRNA, and possibly life, at 3·85 ± 0.2 billion years ago. The poly(A) length of mitochondrial mRNA places the origin of mitochondria within eucaryotes at 2· 1 billion years ago.  相似文献   

11.
A hypothesis is proposed that the first living microbial cell(s) on Earth assembled about 3.6-4 billion years ago when an environmental microscopic entropy (balance between order and disorder; suitable amount of randomness) was within a range suitable for the origin of microbial cell(s) in a hydrogel environment. An earlier origin of microbial life was not possible as the elements, molecules and entropy conditions necessary for life were not available at the microscopic level. Methodology limitations to study postulated past origin of microbial life events and to mimic these events in the laboratory, are still obstacles to understanding the origin of life.  相似文献   

12.
The proposition that glaciation may not have occurred before the Cenozoic--albeit not yet a consensus position--nevertheless raises for reconsideration the surface temperature history of the earth. Glacial episodes, from the Huronian (2.3 billion years ago; BYA) through the late Paleozoic (320 to 250 million years ago; MYA) have been critical constraints on estimation of the upper bounds of temperature (Crowley 1983, Kasting and Toon 1989). Once removed, few if any constraints on the upper temperature limit other than life remain. Walker (1982) recognized that life provides an upper limit to temperature in the Precambrian. We propose a more radical concept: the upper temperature limit for viable growth of a given microbial group corresponds to the actual surface temperature at the time of the group's first appearance. In particular, we propose here that two major evolutionary developments--the emergence of cyanobacteria and aerobic eukaryotes--can be used to determine surface temperature in the Precambrian, and that only subsequent cooling mediated by higher plants and then angiosperms permitted what may possibly be the earth's first glaciation in the late Cenozoic.  相似文献   

13.
A popular theory of life’s origins states that the first biocatalysts were not made of protein but were made of RNA or a very similar polymer. Experiments are beginning to confirm that the catalytic abilities of RNA are compatible with this ‘RNA world’ hypothesis. For example, RNA can synthesize short fragments of RNA in a template-directed fashion and promote formation of peptide, ester and glycosidic linkages. However, no known activity fully represents one presumed by the ‘RNA world’ theory, and reactions such as oxidation and reduction have yet to be demonstrated. Filling these gaps would place the hypothesis on much firmer ground and provide components for building minimal forms of RNA-based cellular life.  相似文献   

14.
A popular theory of life’s origins states that the first biocatalysts were not made of protein but were made of RNA or a very similar polymer. Experiments are beginning to confirm that the catalytic abilities of RNA are compatible with this ‘RNA world’ hypothesis. For example, RNA can synthesize short fragments of RNA in a template-directed fashion and promote formation of peptide, ester and glycosidic linkages. However, no known activity fully represents one presumed by the ‘RNA world’ theory, and reactions such as oxidation and reduction have yet to be demonstrated. Filling these gaps would place the hypothesis on much firmer ground and provide components for building minimal forms of RNA-based cellular life.  相似文献   

15.
A popular theory of life’s origins states that the first biocatalysts were not made of protein but were made of RNA or a very similar polymer. Experiments are beginning to confirm that the catalytic abilities of RNA are compatible with this ‘RNA world’ hypothesis. For example, RNA can synthesize short fragments of RNA in a template-directed fashion and promote formation of peptide, ester and glycosidic linkages. However, no known activity fully represents one presumed by the ‘RNA world’ theory, and reactions such as oxidation and reduction have yet to be demonstrated. Filling these gaps would place the hypothesis on much firmer ground and provide components for building minimal forms of RNA-based cellular life.  相似文献   

16.
Genomes contain evidence for the history of life and furthermore contain evidence for lateral gene transfer, which was an important part of that history. The geological record also contains evidence for the history of life, and newer findings indicates that the Earth's oceans were largely anoxic and highly sulfidic up until about 0.6 billion years ago. Eukaryotes, which fossil data indicate to have been in existence for at least 1.5 billion years, must have therefore spent much of their evolutionary history in oxygen-poor and sulfide-rich environments. Many eukaryotes still inhabit such environments today. Among eukaryotes, organelles also contain evidence for the history of life and have preserved abundant traces of their anaerobic past in the form of energy metabolic pathways. New views of eukaryote phylogeny suggest that fungi may be among the earliest-branching eukaryotes. From the standpoint of the fungal feeding habit (osmotrophy rather than phagotrophy) and from the standpoint of the diversity in their ATP-producing pathways, a eukaryotic tree with fungi first would make sense. Because of lateral gene transfer and endosymbiosis, branches in the tree of genomes intermingle and occasionally fuse, but the overall contours of cell history nonetheless seem sketchable and roughly correlateable with geological time.  相似文献   

17.
The rise of oxygen ca. 2.3 billion years ago (Ga) is the most distinct environmental transition in Earth history. This event was enabled by the evolution of oxygenic photosynthesis in the ancestors of Cyanobacteria. However, long‐standing questions concern the evolutionary timing of this metabolism, with conflicting answers spanning more than one billion years. Recently, knowledge of the Cyanobacteria phylum has expanded with the discovery of non‐photosynthetic members, including a closely related sister group termed Melainabacteria, with the known oxygenic phototrophs restricted to a clade recently designated Oxyphotobacteria. By integrating genomic data from the Melainabacteria, cross‐calibrated Bayesian relaxed molecular clock analyses show that crown group Oxyphotobacteria evolved ca. 2.0 billion years ago (Ga), well after the rise of atmospheric dioxygen. We further estimate the divergence between Oxyphotobacteria and Melainabacteria ca. 2.5–2.6 Ga, which—if oxygenic photosynthesis is an evolutionary synapomorphy of the Oxyphotobacteria—marks an upper limit for the origin of oxygenic photosynthesis. Together, these results are consistent with the hypothesis that oxygenic photosynthesis evolved relatively close in time to the rise of oxygen.  相似文献   

18.
Archaea--timeline of the third domain   总被引:2,自引:0,他引:2  
The Archaea evolved as one of the three primary lineages several billion years ago, but the first archaea to be discovered were described in the scientific literature about 130 years ago. Moreover, the Archaea were formally proposed as the third domain of life only 20 years ago. Over this very short period of investigative history, the scientific community has learned many remarkable things about the Archaea--their unique cellular components and pathways, their abundance and critical function in diverse natural environments, and their quintessential role in shaping the evolutionary path of life on Earth. This Review charts the 'archaea movement', from its genesis through to key findings that, when viewed together, illustrate just how strongly the field has built on new knowledge to advance our understanding not only of the Archaea, but of biology as a whole.  相似文献   

19.
DExH/D box proteins are molecular motors that utilize the energy derived from NTP hydrolysis to perform work — from helicases that remodel RNA to RNPases that alter RNA–protein complexes. Members of this class of proteins are uniquely placed along the RNA information highway to regulate the flow of genetic information. They have been implicated in a number of nodal points encompassing nuclear, cytoplasmic, and organellar RNA-based processes. The identification and characterization of three unique natural products that selectively inhibit the activity of eukaryotic initiation factor (eIF)4A (DDX2) has provided proof-of-principle that the activity of DExH/D box family members can be selectively targeted. Extending these achievements to other DExH/D box proteins is an important future challenge for drugging this family of proteins. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号