共查询到20条相似文献,搜索用时 15 毫秒
1.
4-Aminobutyrate aminotransferase reaction of sulfhydryl residues connected with catalytic activity 总被引:1,自引:0,他引:1
4-Aminobutyrate aminotransferase is inactivated by preincubation with N-(1-pyrene)maleimide (mixing molar ratio 10:1) at pH 7. The reaction with N-(1-pyrene)maleimide was monitored by fluorescence spectroscopy and the degree of labeling of the enzyme determined by absorption spectroscopy. The blocking of 2 cysteinyl residues/enzyme dimer is needed for inactivation of the aminotransferase. The time course of the reaction is significantly affected by the substrate alpha-ketoglutarate, which afforded complete protection against the loss of catalytic activity. Trypsin digestion of pyrene-labeled aminotransferase, followed by gel filtration and "fingerprint" analysis, revealed the presence of only one peptide tagged with the fluorescent probe. The reaction of approximately 1.9 SH residues/dimer with iodosobenzoate resulted in enzyme inactivation together with a formation of an oligomeric species of Mr = 100,000 detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cross-linked subunits are dissociated by addition of 2-mercaptoethanol which also restores full catalytic activity. Altogether, these observations are consistent with the concept that inactivation of 4-aminobutyrate aminotransferase by iodosobenzoate proceeds through disulfide bond formation between vicinal cysteinyl residues of the protein. It is postulated that the critical sulfhydryl groups of the enzyme are situated on opposite sides of the dimeric structure at the subunit interfaces. 相似文献
2.
Doo Sik Kim Jorge E. Churchich 《Biochemical and biophysical research communications》1981,99(4):1333-1340
4-Aminobutyrate aminotransferase from pig brain is inactivated by incubation with o-phthalaldehyde at pH 7.4. The reaction of 6 lysil residues per dimer brings about 90% loss of aminotransferase activity. The substrate 2-oxoglutarate at concentrations higher than the KM 0.1 mM affords complete protection against inactivation. Several lines of experimental evidence indicate that o-phthalaldehyde reacts with lysyl residues other than those involved in the binding of Pyridoxal-5-P.It is postulated that the carboxyl groups of 2-oxoglutarate interacts with positively charged lysyl residues located at the catalytic site. 相似文献
3.
4-Aminobutyrate:2-oxoglutarate aminotransferase of Streptomyces griseus: purification and properties 总被引:1,自引:0,他引:1
4-Aminobutyrate: 2-oxoglutarate aminotransferase of Streptomyces griseus was purified to homogeneity on disc electrophoresis. The relative molecular mass of the enzyme was found to be 100 000 +/- 10 000 by a gel filtration method. The enzyme consists of two subunits identical in molecular mass (Mr 50 000 +/- 1000). The transaminase is composed of 486 amino acids/subunit containing 10 and 12 residues of half-cystine and methionine respectively. The NH2-terminal amino acid sequence of the enzyme was determined to be Thr-Ala-Phe-Pro-Gln. The enzyme exhibits absorption maxima at 278 nm, 340 nm and 415 nm with a molar absorption coefficient of 104 000, 11 400 and 7280 M-1 cm-1 respectively. The pyridoxal 5'-phosphate content was calculated to be 2 mol/mol enzyme. The enzyme has a maximum activity in the pH range of 7.5-8.5 and at 50 degrees C. The enzyme is stable at pH 6.0-10.0 and at temperatures up to 50 degrees C. Pyridoxal 5'-phosphate protects the enzyme from thermal inactivation. The enzyme catalyzes the transamination of omega-amino acids with 2-oxoglutarate; 4-aminobutyrate is the best amino donor. The Michaelis constants are 3.3 mM for 4-aminobutyrate and 8.3 mM for 2-oxoglutarate. Low activity was observed with beta-alanine. In addition to omega-amino acids the enzyme catalyzes transamination with ornithine and lysine; in both cases the D isomer is preferred. Carbonyl reagents and sulfhydryl reagents inhibit the enzyme activity. Chelating agents, non-substrate L and D-2-amino acids, and metal ions except cupric ion showed no effect on the enzyme activity. 相似文献
4.
An enzyme which catalyzes the transamination of 4-aminobutyrate with 2-oxoglutarate was purified 588-fold to homogeneity from Candida guilliermondii var. membranaefaciens, grown with 4-aminobutyrate as sole source of nitrogen. An apparent relative molecular mass of 107,000 was estimated by gel filtration. The enzyme was found to be a dimer made up of two subunits identical in molecular mass (Mr 55,000). The enzyme has a maximum activity in the pH range 7.8-8.0 and a temperature optimum of 45 degrees C. 2-Oxoglutarate protects the enzyme from heat inactivation better than pyridoxal 5'-phosphate. The absorption spectrum of the enzyme exhibits two maxima at 412 nm and 330 nm. The purified enzyme catalyzes the transamination of omega-amino acids; 4-aminobutyrate is the best amino donor and low activity is observed with beta-alanine. The Michaelis constants are 1.5 mM for 2-oxoglutarate and 2.3 mM for 4-aminobutyrate. Several amino acids, such as alpha,beta-alanine and 2-aminobutyrate, are inhibitors (Ki = 38.7 mM, Ki = 35.5 mM and Ki = 33.2 mM respectively). Propionic and butyric acids are also inhibitors (Ki = 3 mM and Ki = 2 mM). 相似文献
5.
4-Aminobutyrate aminotransferase. Conformational changes induced by reduction of pyridoxal 5-phosphate 总被引:1,自引:0,他引:1
Conformational changes induced in 4-aminobutyrate aminotransferase (4-aminobutyrate:2-oxoglutarate aminotransferase, EC 2.6.1.19) by conversion of pyridoxal-5-P to pyridoxyl-5-P were examined by two independent methods. The reactivity of the SH groups of the reduced enzyme is increased by chemical modification of the cofactor. 1.8 SH per dimer of modified enzyme react with DTNB, whereas 1.2 SH per dimer of the native enzyme react with the attacking reagent under identical experimental conditions. The modified and native forms of the enzyme bind the fluorescent probe ANS, but the number of binding sites for ANS is increased as result of conversion of P-pyridoxal to P-pyridoxyl. After the conformational changes onset by reduction of the cofactor, the modified enzyme binds one molecule of pyridoxal-5-P with a Kd of 0.1 microM to become catalytically competent. The catalytic site of the reduce enzyme was probed with P-pyridoxal analogs. Like resolved 4-aminobutyrate aminotransferase, the reduced species recognize the phosphorothioate analog and regain 40% of the total enzymatic activity. Since the catalytic parameters of reduced and native 4-aminobutyrate aminotransferase are indistinguishable, it is concluded that the additional catalytic site of the reduced enzyme is functionally identical to that of the native enzyme. 相似文献
6.
Slabas AR Kroon JT Scheirer TP Gilroy JS Hayman M Rice DW Turnbull AP Rafferty JB Fawcett T Simon WJ 《The Journal of biological chemistry》2002,277(46):43918-43923
Glycerol-3-phosphate 1-acyltransferase is a soluble chloroplast enzyme involved in glycerol-lipid biosynthesis associated with chilling resistance in plants (). Resistance is associated with higher selectivity for unsaturated acyl substrates over saturated ones. In vitro substrate selectivity assays performed under physiologically relevant conditions have been established that discriminate between selective and non-selective forms of the enzyme. A mutation, L261F, in the squash protein converts it from a non-selective enzyme into a selective one. The mutation lies within 10 A of the predicted acyl binding site and results in a higher K(m) for 16:0 acyl carrier protein (ACP). Site-directed mutagenesis was used to determine the importance of four residues, Arg(235), Arg(237), Lys(193), and His(194), implicated to be involved in binding of the phosphate group of glycerol 3-phosphate to the enzyme. All the proteins were highly homologous in structure to the wild type enzyme. Mutations in Arg(235), Arg(237), and Lys(193) resulted in inactive enzyme, while His(194) had reduced catalytic activity. The mutant proteins retained the ability to bind stoichiometric quantities of acyl-ACPs supporting the potential role of these residues in glycerol 3-phosphate binding. 相似文献
7.
Abstract: The reaction of muscimol as amino donor substrate for GABA transaminase (GABA-T) has been studied using enzyme purified from rabbit brain. Enzyme activity was assayed by measuring the glutamate produced using glutamate dehydrogenase. Kinetic parameters determined at 37°C were for GABA, K m (app) = 1.92 ± 0.24 m M , specific activity = 7.33 ± 0.27 μmol/min/mg ( k cat = 13.7s−1 ), and for muscimol, K m (app) = 1.27 ± 0.15 m M , specific activity = 0.101 ± 0.009 μmol/min/mg ( k cat = 0.19s−1 ). Addition of muscimol to the enzyme caused the spectral changes associated with conversion of the pyridoxaldimine form to the pyridoxamine form, and the first-order rate constant for the reaction showed a dependence on muscimol concentration that followed saturation kinetics, with a K = 1.1 ±0.18 m M and k max = 0.065 ± 0.004 s−1 (19°C). The rate of spectral change observed on addition of muscimol to ornithine transaminase was extremely slow—at least an order of magnitude slower than that seen with GABA-T. 相似文献
8.
Aspartate aminotransferase with the pyridoxal-5'-phosphate-binding lysine residue replaced by histidine retains partial catalytic competence 总被引:1,自引:0,他引:1
The active site residue lysine 258 of chicken mitochondrial aspartate aminotransferase was replaced with a histidine residue by means of site-directed mutagenesis. The mutant protein was expressed in Escherichia coli and purified to homogeneity. Addition of 2-oxoglutarate to its pyridoxamine form changed the coenzyme absorption spectrum (lambda max = 330 nm) to that of the pyridoxal form (lambda max = 330/392 nm). The rate of this half-reaction of transamination (kcat = 4.0 x 10(-4)s-1) is five orders of magnitude slower than that of the wild-type enzyme. However, the reverse half-reaction, initiated by addition of aspartate or glutamate to the pyridoxal form of the mutant enzyme, is only three orders of magnitude slower than that of the wild-type enzyme, kmax of the observable rate-limiting elementary step, i.e. the conversion of the external aldimine to the pyridoxamine form, being 7.0 x 10(-2)s-1. Aspartate aminotransferase (Lys258----His) thus represents a pyridoxal-5'-phosphate-dependent enzyme with significant catalytic competence without an active site lysine residue. Apparently, covalent binding of the coenzyme, i.e. the internal aldimine linkage, is not essential for the enzymic transamination reaction, and a histidine residue can to some extent substitute for lysine 258 which is assumed to act as proton donor/acceptor in the aldimine-ketimine tautomerization. 相似文献
9.
Alessandro Lentini Sonia Melino Simone Beninati 《Biochemical and biophysical research communications》2010,393(3):546-833
The human immunodeficiency virus type 1 aspartyl protease (HIV-1 PR) is a homodimeric aspartyl endopeptidase that is required for virus replication. HIV-1 PR was shown to act invitro as acyl-donor and -acceptor for both guinea pig liver transglutaminase (TG, EC 2.3.2.13) and human Factor XIIIa. These preliminary evidences suggested that the HIV-1 PR contains at least three TG-reactive glutaminyl and one lysyl residues. We report here that the incubation of HIV-1 PR with TG increases its catalytic activity. This increase is dependent upon the time of incubation, the concentration of TG and the presence of Ca2+. Identification of ε-(γ-glutamyl)lysine in the proteolytic digest of the TG-modified HIV-1 PR suggested intramolecular covalent cross-linking of this protease which may promote a non-covalent dimerization and subsequent activation of this enzyme via a conformational change. This hypothesis is supported by the observation that the TG-catalyzed activation of HIV-1 PR was completely abolished by spermidine (SPD) which acts as a competitive inhibitor of ε-(γ-glutamyl)lysine formation. Indeed, in the presence of 1 mM SPD the formation of the isopeptide was decreased of about 80%. The main products of the TG-catalyzed modification of HIV-1 PR in the presence of SPD were N1-mono(γ-glutamyl)SPD and N8-mono(γ-glutamyl)SPD. Negligible amount of N1,N8-bis(γ-glutamyl)SPD were found. The significance of these results is discussed with respect to the activation of the protease by post-translational modification and design of potential inhibitors. 相似文献
10.
Reengineering the catalytic lysine of aspartate aminotransferase by chemical elaboration of a genetically introduced cysteine 总被引:5,自引:0,他引:5
The active-site essential catalytic residue of aspartate aminotransferase, Lys 258, has been converted to Cys (K258C) by site-directed mutagenesis. This mutant retains less than 10(-6) of the wild-type activity with L-aspartate. The deleted general base was functionally replaced by selective (with respect to the other five cysteines in wild type) aminoethylation of the introduced Cys 258 with (2-bromoethyl)amine following reversible protection of the nontarget sulfhydryl groups at different stages of unfolding. The chemically elaborated mutant (K258C-EA) is 10(5) times more reactive than is K258C and has a kcat value of approximately 7% of that of wild type (WT). Km and KI values are similar to those for WT. The acidic pKa controlling V/KAsp is shifted from 7.3 (WT) to 6.0 (mutant). V/K values for amino acids are approximately 3% of those found for WT, whereas they are approximately 20% for keto acids. The value of DV increases from 1.6 for WT to 3.4 for the mutant, indicating that C alpha proton abstraction constitutes a more significant kinetic barrier for the latter enzyme. A smaller, but still significant, increase in D(V/KAsp) from 1.9 in WT to 3.0 in the mutant shows that the forward and reverse commitment factors are inverted by the mutation. The acidic limb of the V/KAsp versus pH profile, is lowered by 1.3 pH units, probably reflecting the similar difference in the basicity of the epsilon-NH2 group in gamma-thialysine versus that in lysine.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
Non-enzymatic glycation is a common post-translational modification of tissue and plasma proteins which can impair their functions in living organisms. In this study, the authors have demonstrated for the first time an inhibitory effect of in vitro glycation on the catalytic activity of alanine aminotransferase (ALT, EC 2.6.1.2), a pyridoxal phosphate enzyme with several lysine residues in the molecule. The porcine heart enzyme was incubated with 50 mmol/l D-fructose, D-glucose, D,L-glyceraldehyde, or D-ribose in 0.1 mol/l phosphate buffer (pH 7.4) at 25°C for up to 20 days. The strongest glycation effect was shown by D,L-glyceraldehyde, which caused complete enzyme inhibition within 6 days. After 20 days of incubation, the ALT activity in samples with D-fructose and D-ribose was less than 7% of the initial enzyme activity. A statistically significant effect of D-glucose on the enzymatic activity of ALT was not found. Incubation of ALT with D-fructose, D,L-glyceraldehyde and D-ribose minimized its catalytic activity both in the glycated and non-glycated fractions of the samples. Markedly higher activity was found in the glycated fraction with glucose. The inhibitory effect of glycation of ALT with D-fructose and D-ribose was found to be more intensive in the presence of L-alanine and weaker in the presence of 2-oxoglutarate. The findings suggest that glycation of the e-amino group of Lys313 as a crucial part of the catalytic site of ALT may contribute to ALT inactivation in the presence of glycating sugars. Nevertheless, glycation of lysine residues outside the active center of ALT seems to be primary. 相似文献
12.
Raspail C Graindorge M Moreau Y Crouzy S Lefèbvre B Robin AY Dumas R Matringe M 《The Journal of biological chemistry》2011,286(29):26061-26070
4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxyphenylpyruvate (HPP) into homogentisate. HPPD is the molecular target of very effective synthetic herbicides. HPPD inhibitors may also be useful in treating life-threatening tyrosinemia type I and are currently in trials for treatment of Parkinson disease. The reaction mechanism of this key enzyme in both plants and animals has not yet been fully elucidated. In this study, using site-directed mutagenesis supported by quantum mechanical/molecular mechanical theoretical calculations, we investigated the role of catalytic residues potentially interacting with the substrate/intermediates. These results highlight the following: (i) the central role of Gln-272, Gln-286, and Gln-358 in HPP binding and the first nucleophilic attack; (ii) the important movement of the aromatic ring of HPP during the reaction, and (iii) the key role played by Asn-261 and Ser-246 in C1 hydroxylation and the final ortho-rearrangement steps (numbering according to the Arabidopsis HPPD crystal structure 1SQD). Furthermore, this study reveals that the last step of the catalytic reaction, the 1,2 shift of the acetate side chain, which was believed to be unique to the HPPD activity, is also catalyzed by a structurally unrelated enzyme. 相似文献
13.
Manaswini Sivaramakrishnan Abhishek S. Kashyap Beat Amrein Stefanie Saenger Sonja Meier Christian Staudenmaier Zee Upton Friedrich Metzger 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
The insulin-like growth factor (IGF) system is composed of ligands and receptors which regulate cell proliferation, survival, differentiation and migration. Some of these functions involve regulation by the extracellular milieu, including binding proteins and other extracellular matrix proteins. However, the functions and exact nature of these interactions remain incomplete.Methods
IGF-I variants PEGylated at lysines K27, K65 and K68, were assessed for binding to IGFBPs using BIAcore, and for phosphorylation of the IGF-IR. Furthermore, functional consequences of PEGylation were investigated using cell viability and migration assays. In addition, downstream signaling pathways were analyzed using phospho-AKT and phospho-ERK1/2 assays.Results
IGF-I PEGylated at lysines 27 (PEG-K27), 65 (PEG-K65) or 68 (PEG-K68) was employed. Receptor phosphorylation was similarly reduced 2-fold with PEG-K65 and PEG-K68 in 3T3 fibroblasts and MCF-7 breast cancer cells, whereas PEG-K27 showed a more than 10- and 3-fold lower activation for 3T3 and MCF-7 cells, respectively. In addition, all PEG-IGF-I variants had a 10-fold reduced association rate to IGF binding proteins (IGFBPs). Functionally, all PEG variants lost their ability to induce cell migration in the presence of IGFBP-3/vitronectin (VN) complexes, whereas cell viability was fully preserved. Analysis of downstream signaling revealed that AKT was preferentially affected upon treatment with PEG-IGF-I variants whereas MAPK signaling was unaffected by PEGylation.Conclusion
PEGylation of IGF-I has an impact on cell migration but not on cell viability.General significance
PEG-IGF-I may differentially modulate IGF-I mediated functions that are dependent on receptor interaction as well as key extracellular proteins such as VN and IGFBPs. 相似文献14.
G Polidoro D di Cola C di Ilio G del Boccio L Politi R Scandurra 《Physiological chemistry and physics》1975,7(3):255-261
The role of tryptophan, methionine, and histidine residues in mitochondrial aspartate aminotransferase from beef kidney has been established by using N-bromosuccinimide, 2-hydroxy-5-nitrobenzylbromide, and tetraiodofluoresceine as specific chemical modifiers of the amino acid residues of the enzyme. Since N-bromosuccinimide promotes extensive inactivation of the enzyme and the chemical modification of 1.65 tryptophan and 3 methionine residues per enzymes protomer, 2-hydroxy-5-nitrobenzylbromide modifies once more 1.65 tryptophan residues per enzyme protomer but induces only 10% inactivation of the enzyme. Tetraiodofluoresceine exerts a 40% inactivation of the enzyme which is due to the chemical modification of 5.8 histidine res in 相似文献
15.
Methanothermobacter thermautotrophicus uses lysine for both protein synthesis and cross-linking pseudomurein in its cell wall. A diaminopimelate aminotransferase enzyme from this methanogen (MTH0052) converts tetrahydrodipicolinate to l,l-diaminopimelate, a lysine precursor. This gene complemented an Escherichia coli diaminopimelate auxotrophy, and the purified protein catalyzed the transamination of diaminopimelate to tetrahydrodipicolinate. Phylogenetic analysis indicated this gene was recruited from anaerobic Gram-positive bacteria. These results expand the family of diaminopimelate aminotransferases to a diverse set of plant, bacterial and archaeal homologs. In contrast marine methanogens from the Methanococcales, which lack pseudomurein, appear to use a different diaminopimelate pathway for lysine biosynthesis. 相似文献
16.
Khajeh K Naderi-Manesh H Ranjbar B Moosavi-Movahedi A Nemat-Gorgani M 《Enzyme and microbial technology》2001,28(6):543-549
Chemical modification of lysine residues in two bacterial alpha-amylases, a mesophilic enzyme from Bacillus amyloliquefaciens (BAA) and a thermophilic enzyme from Bacillus licheniformis (BLA) was carried out using citraconic anhydride. 13 +/- 1 residues in BAA and 10 +/- 1 residues in BLA were found modified under defined experimental conditions. Modification brought about dramatic enhancement of thermal stability of BAA and catalytic activity of BLA. Such alterations were found dependent on the temperature and pH. Results obtained on Tm, the extent of deamidation, changes in the circular dichroism (CD) spectra and kinetic parameters before and after modification are discussed in terms of their contributions to the mechanism of irreversible thermoinactivation and activity enhancement. 相似文献
17.
Essential lysine residues were sought in the catalytic site of baker's yeast aspartyl-tRNA synthetase (an alpha 2 dimer of Mr 125,000) using affinity labeling methods and periodate-oxidized adenosine, ATP, and tRNA(Asp). It is shown that the number of periodate-oxidized derivatives which can be bound to the synthetase via Schiff's base formation with epsilon-NH2 groups of lysine residues exceeds the stoichiometry of specific substrate binding. Furthermore, it is found that the enzymatic activities are not completely abolished, even for high incorporation levels of the modified substrates. The tRNA(Asp) aminoacylation reaction is more sensitive to labeling than is the ATP-PPi exchange one; for enzyme preparations modified with oxidized adenosine or ATP this activity remains unaltered. These results demonstrate the absence of a specific lysine residue directly involved in the catalytic activities of yeast aspartyl-tRNA synthetase. Comparative labeling experiments with oxidized ATP were run with several other aminoacyl-tRNA synthetases. Residual ATP-PPi exchange and tRNA aminoacylation activities measured in each case on the modified synthetases reveal different behaviors of these enzymes when compared to that of aspartyl-tRNA synthetase. When tested under identical experimental conditions, pure isoleucyl-, methionyl-, threonyl- and valyl-tRNA synthetases from E. coli can be completely inactivated for their catalytic activities; for E. coli alanyl-tRNA synthetase only the tRNA charging activity is affected, whereas yeast valyl-tRNA synthetase is only partly inactivated. The structural significance of these experiments and the occurrence of essential lysine residues in aminoacyl-tRNA synthetases are discussed.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
Saino H Ukita Y Ago H Irikura D Nisawa A Ueno G Yamamoto M Kanaoka Y Lam BK Austen KF Miyano M 《The Journal of biological chemistry》2011,286(18):16392-16401
Leukotriene (LT) C(4) and its metabolites, LTD(4) and LTE(4), are involved in the pathobiology of bronchial asthma. LTC(4) synthase is the nuclear membrane-embedded enzyme responsible for LTC(4) biosynthesis, catalyzing the conjugation of two substrates that have considerably different water solubility; that amphipathic LTA(4) as a derivative of arachidonic acid and a water-soluble glutathione (GSH). A previous crystal structure revealed important details of GSH binding and implied a GSH activating function for Arg-104. In addition, Arg-31 was also proposed to participate in the catalysis based on the putative LTA(4) binding model. In this study enzymatic assay with mutant enzymes demonstrates that Arg-104 is required for the binding and activation of GSH and that Arg-31 is needed for catalysis probably by activating the epoxide group of LTA(4). 相似文献
19.
20.
The primary structure of aspartate aminotransferase from pig heart muscle. Digestion with a proteinase having specificity for lysine residues.
下载免费PDF全文

S Doonan H J Doonan R Hanford C A Vernon J M Walker L P da Airold F Bossa D Barra M Carloni P Fasella F Riva 《The Biochemical journal》1975,149(3):497-506
Carboxymethylated aspartate aminotransferase was digested with a proteinase claimed to be specific for lysine residues. Complete cleavage occurred at 12 of the 19 lysine residues in the protein, but at the remaining seven residues cleavage was either restricted or absent. In addition, cleavage was observed at three of the 26 arginine residues. These results are discussed with reference to the amino acid residues adjacent to points of complete or restricted cleavage. The complete primary structure of aspartate aminotransferase, based on these and other studies, is given. Evidence for the assignment of some acid and amide side chains has been deposited as Supplementary Publication SUP 50050 (11 pp.) at the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1975) 145, 5. The evidence for the assignment of residue 366 was less conclusive than for the other acid and amide side chains and is, therefore, given in the main paper. 相似文献