首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D R Burgess 《Tissue & cell》1976,8(1):147-158
During the period of early morphogenetic folding of the intestinal epithelium, changes in the epithelial-mesenchymal interface were observed by light microscopy, scanning and transmission electron microscopy. The epithelium in cross-section, appears first as a circle, then an ellipse and finally by a triangle prior to the formation of the first three previllous ridges. The bases of all epithelial cells are flat at the circular stage. At the ellipse and triangle stages the bases of the epithelial cells occupying the sides possess lobopodia that do not penetrate the basal lamina. The immediate mesenchymal cells subjacent to those epithelial cells on the sides of the ellipse and triangle alter their orientation to being rounded-up or perpendicular to the plane of the basal lamina. Large numbers of fine mesenchymal pseudopodia in addition to many extracellular fibrils are revealed by transmission and scanning electron microscopy at the epithelial-mesenchymal interface. The fine mesenchymal pseudopodia come into close contact but do not penetrate the ruthenium red-staining basal lamina. The possible roles of close contact between epithelium and mesenchyme, the alteration in orientation of mesenchyme cells, and of the basal lamina in tissue interaction are discussed.  相似文献   

2.
Observations on fine structure at the basal end of the intestinal epithelium in the midgut region of Balanus balanoides and Balanus improvisus reveal complex interrelationships among several tissues. Numerous elongate cell processes extend towards the intestinal epithelium penetrating between layers of intestinal muscle through blood spaces and into the basal lamina underlying the epithelium. Two types of morphological relationships occur between cell processes and the basal end of the intestinal epithelial cell: 1. The cell process may penetrate the basal lamina and lie closely apposed to the epithelium. 2. The cell process may give rise to narrow, medially-directed, finger-like extensions (projections). The narrow projections penetrate the basal lamina and, in addition, terminate as dilated bulbs within inpocketings of the epithelium. In some respects the cell processes are suggestive of neural tissue.  相似文献   

3.
Neural crest cells separate from the neural epithelium in a region devoid of a basal lamina and migrate along pathways bordered by intact basal laminae. The distribution of basal laminae suggests that they might have an important role in the morphogenesis of the neural crest by acting as a barrier to migration. The experiments reported here have tested directly whether neural crest cells can penetrate a basal lamina. Isolated neural tubes, neural crest cells cultured for 24 hr, or pigmented neural crest cells were explanted onto human placental amnions from which the epithelium had been removed to expose the basal lamina. In no case did neural crest cells or crest derivatives penetrate the basal lamina to invade the underlying stroma. If crest cells were grown on the stromal side of the amnion, they invaded the connective tissue. Pigmented neural crest derivative and [3H]thymidine-labeled nonpigmented crest cells were also confronted with chick embryonic basal laminae by grafting the cells into the lumen of the neural tube at the axial levels where host crest migration had commenced. Most of the grafted cells invaded the neural epithelium and accumulated after 24 hr at the basal surface of the neural tube. A few crest cells escaped through the dorsal surface of the neural tube and entered the overlying ectoderm, presumably through the wound created during the grafting procedure. Some of these grafted cells, located initially by light microscopy, were examined at the higher magnification and resolution offered by the transmission electron microscope to determine the relationship of the grafted cells to the basal lamina. In 50% (14 total) of the cases, the crest cells never reached the basal lamina of the neural tube, but were trapped by cell junctions between the neural epithelial cells. Of the remaining grafted cells that were relocated in the TEM (50%, total 15) all were spread on the basal lamina, but were not seen penetrating it. Likewise, in the three cases where crest cells were found in the epidermal ectoderm, all were in contact with the basal lamina of the ectoderm but did not have any processes extending through it. In three cases, at the level of the light microscope, crest cells were found to extend through the basal surface of the neural tube. In all these instances, the cells followed the dorsal root nerve exiting through a region of the neural tube that is devoid of a basal lamina.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The porosity of the epithelial basal lamina of normal rat intestine was studied by SEM. Epithelial removal was accomplished by prolonged fixation of tissue samples in OsO4 or immersion in aqueous H3BO3, followed by dehydration in acetone and microdissection by ultrasonic vibration. The underlying basal lamina of intestinal epithelium reveals numerous pores of variable size. These pores are more numerous in small than in large intestine and penetrate the entire thickness of the basal lamina. Within the basal lamina overlying lymph nodules, they are numerically increased. Their occurrence is evident in fixed and unfixed, sonicated and unsonicated tissue samples. Microprojections of epithelial cytoplasm are often observed within these pores. The results of this study suggest that migrating cells or epithelial-cell processes induce pore formation in epithelial basal laminae and that these pores may be eventually repaired.  相似文献   

5.
The events in the transformation of the intestine of the larval lamprey into the adult intestine were followed through the seven (1–7) stages of metamorphosis in anadromous Petromyzon marinus L. Light and electron-microscope observations demonstrated that the processes of degeneration, differentiation, and proliferation are involved in the transformation. In the anterior intestine, degeneration of cells and the extrusion of others into the lumen results in the disappearance of secretory (zymogen) cells and the decline in numbers of endocrine and ciliated cells. Larval absorptive cells, with a prominent brush border, are believed to dedifferentiate into unspecialized columnar cells with few microvilli. Degeneration and removal of cells occurs by both autophagy and heterography and cells extruded into the lumen in the anterior intestine are phagocytosed by epithelial cells of the posterior intestine. The loss of epithelial cells during transformation results in the folding and degradation of parts of the basal lamina and in an extensive widening of the lateral intercellular spaces in all parts of the intestine. As metamorphosis is a nontrophic period of the lamprey life cycle, the possible morphological effects of starvation on the intestinal epithelium are discussed. The development of longitudinal folds is a consequence of the events of metamorphic transformation of the intestinal mucosa. Although an interaction between the epithelium and the underlying tissues is believed to be importent, the actual mechanism of fold development is unknown. The intestinal epithelium of adult lampreys develops from surviving cells of the larval (primary) epithelium. Unlike the situation in amphibians, there does not appear to be a group (nest) of undifferentiated larval cells which differentiate into the adult (secondary) epithelium. Instead, in lampreys, columnar cells that persist through the degradative processes seem to be the source of absorptive and ciliated cells and probably are responsible for mucous and secretory cells. Preliminary observations indicate that the intestinal epithelium of feeding adults is specialized into an anterior region which liberates a secretion, absorbs lipid, and possesses the machinery for ion transport. A posterior region absorbs lipid, secretes mucus, and likely is involved in some protein absorption.  相似文献   

6.
Histological, histochemical, and ultrastructural features of the gut of the European endemic cave salamander Proteus anguinus were studied. The gut is a relatively undifferentiated muscular tube lined with a simple columnar epithelium containing numerous goblet cells. The mucosa and underlying lamina propria/submucosa are elevated into a number of high longitudinal folds projecting into the lumen. The enterocytes are covered apically with uniform microvilli. Irregularity in the arrangement of microvilli was observed. Occasionally, irregular protrusions of the cytoplasm appear between groups of microvilli. Pinocytotic activity occurs at the bases of the intermicrovillous space. Mitochondria are numerous in the apical cytoplasm and basally beneath the nuclei. The supranuclear cytoplasm contains most of the cell organelles. The lateral plasma membranes of adjacent cells interdigitate and are joined by junctional complexes. The periodic acid-Schiff (PAS) reaction, indicating neutral mucosubstances, is positive only in the apical brush border of enterocytes and in goblet cells. The goblet cells also stained with Alcian blue (AB), at pH 2.5, thus revealing the presence of carboxylated glycosaminoglycans. Compact aggregations of AB- and PAS-negative cells are situated directly below the epithelium. Mitotic figures are present in individual clusters of cells. The fine structure of cells in these clusters indicated that these cells could be responsible for renewal of intestinal epithelium. Numerous endocrine-like cells could also be seen. The closely packed smooth muscle cells and amorphous extracellular material with collagen fibrils constitute a net-like structure under the basal lamina that is very closely associated with the epithelium. There are numerous acidophilic granular cells between epithelial cells, in the lamina propria/submucosa, and between cells aggregations. They seem to be associated with nematode infections and possibly constitute a humoral defense mechanism.  相似文献   

7.
Summary Enterochromaffin cells of adult mouse duodenum were studied with light- and electron-microscopical techniques. They were distinguished from other enteroendocrine cells by their pleomorphic, electron-dense secretory granules in the basal cytoplasm. At the apices of enterochromaffin cells, tufts of short microvilli bordered the gut lumen. At their bases, irregular cytoplasmic extensions were either in contact with or passed through the basal lamina. The presence of cytoplasmic extensions in close proximity to fenestrated capillaries and subepithelial nerves suggested an endocrine or paracrine function. Electron micrographs of serial thin sections were used to reconstruct an enterochromaffin cell from the crypt epithelium in three dimensions and to determine its relationship with the underlying neural plexus. Although extensions from the serially sectioned and reconstructed cell and other enterochromaffin cells studied in crypt epithelia protruded through the basal lamina, no synaptic contacts were seen. Evidence of a synaptic contact between a neurite and another type of enteroendocrine cell (possibly an intestinal A cell), suggested a neurocrine role for some of the basally-granulated cells. Possible functions of enterochromaffin cells are discussed in the light of recent literature on the system of enteroendocrine cells, also known as APUD (amine precursor uptake and decarboxylation) cells and/or paraneurons.  相似文献   

8.
Ultrastructural changes in the intestinal connective tissue of Xenopus laevis during metamorphosis have been studied. Throughout the larval period to stage 60, the connective tissue consists of a few immature fibroblasts surrounded by a sparse extracellular matrix: few collagen fibrils are visible except close to the thin basal lamina. At the beginning of the transition from larval to adult epithelial form around stage 60, extensive changes are observed in connective tissue. The cells become more numerous and different types appear as the collagen fibrils increase in number and density. Through gaps in the thickened and extensively folded basal lamina, frequent contacts between epithelial and connective tissue cells are established. Thereafter, with the progression of fold formation, the connective tissue cells become oriented according to their position relative to the fold structure. The basal lamina beneath the adult epithelium becomes thin after stage 62, while that beneath the larval epithelium remains thick. Upon the completion of metamorphosis, the connective tissue consists mainly of typical fibroblasts with definite orientation and numerous collagen fibrils. These observations indicate that developmental changes in the connective tissue, especially in the region close to the epithelium, are closely related spatiotemporarily to the transition from the larval to the adult epithelial form. This suggests that tissue interactions between the connective tissue and the epithelium play important roles in controlling the epithelial degeneration, proliferation, and differentiation during metamorphic climax.  相似文献   

9.
Ovarian follicular granulosa cells surround and nurture oocytes, and produce sex steroid hormones. It is believed that during development the ovarian surface epithelial cells penetrate into the ovary and develop into granulosa cells when associating with oogonia to form follicles. Using bovine fetal ovaries (n = 80) we identified a novel cell type, termed GREL for Gonadal Ridge Epithelial-Like. Using 26 markers for GREL and other cells and extracellular matrix we conducted immunohistochemistry and electron microscopy and chronologically tracked all somatic cell types during development. Before 70 days of gestation the gonadal ridge/ovarian primordium is formed by proliferation of GREL cells at the surface epithelium of the mesonephros. Primordial germ cells (PGCs) migrate into the ovarian primordium. After 70 days, stroma from the underlying mesonephros begins to penetrate the primordium, partitioning the developing ovary into irregularly-shaped ovigerous cords composed of GREL cells and PGCs/oogonia. Importantly we identified that the cords are always separated from the stroma by a basal lamina. Around 130 days of gestation the stroma expands laterally below the outermost layers of GREL cells forming a sub-epithelial basal lamina and establishing an epithelial-stromal interface. It is at this stage that a mature surface epithelium develops from the GREL cells on the surface of the ovary primordium. Expansion of the stroma continues to partition the ovigerous cords into smaller groups of cells eventually forming follicles containing an oogonium/oocyte surrounded by GREL cells, which become granulosa cells, all enclosed by a basal lamina. Thus in contrast to the prevailing theory, the ovarian surface epithelial cells do not penetrate into the ovary to form the granulosa cells of follicles, instead ovarian surface epithelial cells and granulosa cells have a common precursor, the GREL cell.  相似文献   

10.
Early development of the hind limb of Xenopus (stages 44–48) has been analyzed at the level of ultrastructure with emphasis on differentiation of extracellular matrix components and intercellular contacts. By stages 44–45, mesenchyme is separated from prospective bud epithelium by numerous adepidermal granules in a subepithelial compartment (the lamina lucida), a continuous basal lamina and several layers of collagen (the basement lamella). Tricomplex stabilization of amphoteric phospholipid demonstrates that each adepidermal granule consists of several membranelike layers (electron-lucent band 25–30 Å; electron-dense band 20–40 Å), which are usually parallel to the basal surface of adjacent epithelial cells. Collagen fibrils are interconnected by filaments (35 Å in diameter) which stain with ruthenium red. Epithelial cells possess junctional complexes at their superficial borders, numerous desmosomes at apposing cell membranes and hemidesmosomes at their basal surface. Mesenchymal cells predominantly exhibit close contacts (100–150 Å separation) with few focal tight junctions at various areas of their surface. By stages 47–48, adepidermal granules are absent beneath bud epithelium and layers of collagen in the basement lamella lose filamentous cross-linking elements. Filopodia of mesenchymal cells penetrate the disorganized matrix and abut the basal lamina. Hemidesmosomes disappear at the basal surface of the epidermis and mesenchymal cells immediately subjacent to epithelium exhibit focal tight junctions and gap junctions at their lateral borders. These structural changes may be instrumental in the epitheliomesenchymal interactions of early limb development. Degradation of oriented collagenous lamellae permits direct association of mesenchymal cell surfaces (filopodia) with surface-associated products of epithelial cells (organized into the basal lamina). Development of structural pathways for intercellular ion and metabolite transport in mesenchyme may coordinate events specific to limb morphogenesis.  相似文献   

11.
Crohn's disease (CD) is a chronic condition characterized by recurrent flares of inflammation in the gastrointestinal tract. Disease etiology is poorly understood and is characterized by dysregulated immune activation that progressively destroys intestinal tissue. Key cellular compartments in disease pathogenesis are the intestinal epithelial layer and its underlying lamina propria. While the epithelium contains predominantly epithelial cells, the lamina propria is enriched in immune cells. Deciphering proteome changes in different cell populations is important to understand CD pathogenesis. Here, using isobaric labeling-based quantitative proteomics, we perform an exploratory study to analyze in-depth proteome changes in epithelial cells, immune cells and stromal cells in CD patients compared to controls using cells purified by FACS. Our study revealed increased proteins associated with neutrophil degranulation and mitochondrial metabolism in immune cells of CD intestinal mucosa. We also found upregulation of proteins involved in glycosylation and secretory pathways in epithelial cells of CD patients, while proteins involved in mitochondrial metabolism were reduced. The distinct alterations in protein levels in immune- versus epithelial cells underscores the utility of proteome analysis of defined cell types. Moreover, our workflow allowing concomitant assessment of cell-type specific changes on an individual basis enables deeper insight into disease pathogenesis.  相似文献   

12.
ABSTRACT The Ultrastructure of rectum epithelial cells in the mosquito larvae, Anopheles sinensis Wiedemann, was studied using electron microscope. The rectal epithelium forms rectal papillae composed of the absorptive cells and the surrounding basal cells. Moreover, rectal epithelium was covered with thin cuticular intima. Apical plasma membrane of the epithelial cells had infoldings and in between them, mitochondria developed into elongated shape were attached. In addition, the membrane infoldings reach down into the cell cytoplasm to form several layers of leaflet-like prolongations. On both sides of these prolongations were also large, well-developed mitochondria. Their formation was that mitochondria were attached to 3 μm length and 4–13 layers of membrane wrinkle lump. Many spherites, which are lamelated crystals that form an illusory structure in concentric circles inside of the cytoplasm of epithelial cell were observed. Basal plasma membrane in the epithelial cells was also wrinkled to promulgate into the cytoplasm to become basal infoldings producing canaliculi in basal labyrinth formation. There were many mitochondria scattered in these formations as well. On the bottom of the epithelial cell, basal lamina was attached and between basal lamina and muscle bundle was subepithelial space, which is connective tissue. Inside the space, tracheal and nerve cells were observed.  相似文献   

13.
Two types of interstitial cells have been demonstrated in close association in the deep muscular plexus of rat small intestine, by electron microscopy. Cells of the first type are characterized by a fibroblastic ultrastructure, i.e. a well-developed granular endoplasmic reticulum, Golgi apparatus and absence of the basal lamina. They form a few small gap junctions with the circular muscle cells and show close contact with axon terminals containing many synaptic vesicles. They may play a role in conducting electrical signals in the muscle tissue. Cells of the second type are characterized by many large gap junctions that interconnect with each other and with the circular muscle cells. Their cytoplasm is rich in cell organells, including mitochondria, granular endoplasmic reticulum and Golgi apparatus. They show some resemblance to the smooth muscle cells and have an incomplete basal lamina, caveolae and subsurface cisterns. However, they do not contain an organized contractile apparatus, although many intermediate filaments are present in their processes. They also show close contacts with axon terminals containing synaptic vesicles. These gap-junction-rich cells may be regular components of the intestinal tract and may be involved in the pacemaking activity of intestinal movement.  相似文献   

14.
The organization of the basolateral membrane domain of highly polarized intestinal absorptive cells was studied in adult rat intestinal mucosa, during development of polarity in fetal intestine, and in isolated epithelial sheets. Semi-thin frozen sections of these tissues were stained with a monoclonal antibody (mAb 4C4) directed against Na+,K+-ATPase, and with other reagents to visualize distributions of the membrane skeleton (fodrin), an epithelial cell adhesion molecule (uvomorulin), an apical membrane enzyme (aminopeptidase), and filamentous actin. In intact adult epithelium, Na+,K+-ATPase, membrane-associated fodrin, and uvomorulin were concentrated in the lateral, but not basal, subdomain. In the stratified epithelium of fetal intestine, both fodrin and uvomorulin were localized in areas of cell-cell contact at 16 and 17 d gestation, a stage when Na+,K+-ATPase was not yet expressed. These molecules were excluded from apical domains and from cell surfaces in contact with basal lamina. When Na+,K+-ATPase appeared at 18-19 d, it was codistributed with fodrin. Detachment of epithelial sheets from adult intestinal mucosa did not disrupt intercellular junctions or lateral cell contacts, but cytoplasmic blebs appeared at basal cell surfaces, and a diffuse pool of fodrin and actin accumulated in them. At the same time, Na+,K+-ATPase moved into the basal membrane subdomain, and extensive endocytosis of basolateral membrane, including Na+,K+-ATPase, occurred. Endocytosis of uvomorulin was not detected and no fodrin was associated with endocytic vesicles. Uvomorulin, along with some membrane-associated fodrin and some Na+,K+-ATPase, remained in the lateral membrane as long as intercellular contacts were maintained. Thus, in this polarized epithelium, interaction of lateral cell-cell adhesion molecules as well as basal cell-substrate interactions are required for maintaining the stability of the lateral membrane skeleton and the position of resident membrane proteins concentrated in the lateral membrane domain.  相似文献   

15.
The digestive systems in mammals and Drosophila are quite different in terms of their complexity and organization, but their biological functions are similar. The Drosophila midgut is a functional equivalent of the mouse small intestine. Adult intestinal stem cells (ISCs) have been identified in both the mouse small intestine and Drosophila midgut. The anatomy and cell renewal in the Drosophila midgut are similar to those in the mouse small intestine: the intestinal epithelium in both systems is a tube composed of epithelial cells with absorptive and secretory functions; the Notch signaling controls absorptive versus secretory fate decisions in the intestinal epithelium; cell renewal in both systems starts from stem cells in the basal cell layer, and the differentiated cells then move toward the lumen. However, it is clear that the stem cells in the two systems are regulated in different ways. In this review, we will compare cell renewal and stem cell regulation in the two systems. J. Cell. Physiol. 222:33–37, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Summary The testes of adult male Syrian hamsters underwent involution within six weeks after optic enucleation. The diameter of the seminiferous tubules was 39% less than controls. Sertoli cells, spermatogonia, and primary spermatocytes were still present, but all steps of spermatids were completely absent from the involuted testes. Lipid droplets filled the Sertoli cell cytoplasm and often encroached upon the nucleus. Sertoli cells had sparse mitochondria and smooth endoplasmic reticulum, but Golgi cisternae were abundant. Typical SertoliSertoli junctions attached contiguous Sertoli cells. With lanthanum tracers it was demonstrated that these junctions were impenetrable; therefore, the bloodtestis barrier was deemed intact. Irregularly shaped protrusions often arose from the peritubular tissue and extended inward toward the seminiferous epithelium, often displacing the cytoplasm of the Sertoli cells and spermatogonia. The core of these protrusions consisted of irregular extensions of myoid cell cytoplasm surrounded by the myoid cells' basal lamina. External to the myoid cell basal lamina were bundles of collagen filaments with the basal lamina of the seminiferous epithelium forming the outermost layer of these protrusions. The apices of the Sertoli cells gave rise to numerous leaf-like processes that extended into and obliterated the lumen of the tubules. The Sertoli cell basal cytoplasm often contained phagocytized degenerating germ cells that appeared to give rise to the lipid droplets that filled the Sertoli cell cytoplasm. Acid phosphatase rich lysosome-like organelles were seen fusing with the degenerating germ cells and lipid droplets. The degenerating germ cells also were shown to contain acid phosphatase activity.  相似文献   

17.
In rabbit intestinal epithelium, vimentin intermediate filaments are selectively expressed in the M cells of follicle-associated epithelium (FAE). To find intestinal epithelial cells belonging to the M cell lineage, vimentin was detected immunohistochemically in the rabbit small and large intestines. Vimentin-positive columnar cells were scattered throughout the villus epithelium of the small intestine. In their cytoplasm, vimentin was located from the perinuclear region to the cell membrane touching intraepithelial lymphocytes. These cells had microvilli shorter than those of absorptive cells, and the alkaline phosphatase activity of the microvilli was markedly weaker than that of absorptive cell microvilli. Glycoconjugates on the surface of the microvilli were alcian blue positive and periodic acid-Schiff negative. The morphological and histochemical features of these vimentin-positive villus epithelial cells differed from those of adjacent absorptive cells and closely resembled those of the M cells in FAE covering Peyer's patches and solitary lymphatic nodules. These results suggest that the vimentin-positive cells in the villus epithelium belong to the M cell lineage.  相似文献   

18.
Staphylococcal enterotoxins are responsible for food poisoning and toxic shock syndrome due to their superantigen activity on T cells. Although their activity necessarily involves passage through the intestinal epithelium, little is known about this critical step. In the present study, we compared the in vitro transport of staphylococcal enterotoxin A through human intestinal absorptive and M cells. We found that the transport of the toxin through M cells was polarized and temperature-sensitive, in contrast with the less efficient transport of the toxin by absorptive cells. These data suggest the involvement of M cells in the intestinal absorption of staphylococcal enterotoxins.  相似文献   

19.
Using an affinity purified antibody raised against the RI-H fragment of rat intestinal lectin L-36, the latter protein has been identified within the esophageal epithelium by means of ultracryotomy followed by immunogold labeling. The epithelium consists of 4 morphologically distinct cell-types, namely, the basal, spiny, granular and squamous cells, and each of these exhibits a different immunolabeling pattern. The basal cells form a layer on the basal lamina, and in these a diffuse cytoplasmic staining is observed. This basal cell layer is overlaid by spiny cells that extend many cell processes into wide intercellular spaces. In these cells, immunogold particles are found only on small granular inclusions consisting of an electron-lucent homogeneous substance. The granular cells from a third layer over the spiny cells, and are characterized by a number of large granular inclusions with an electron-dense core rimmed by a less electron-dense substance. Immunogold labeling is found on these granules, both on the core and peripheral region. Squamous cell-types constitute the most superficial layer of the epithelium. They are without granular inclusions, and immunogold labeling is confined to the cytoplasmic surface of the thickened plasma membrane. These findings suggest that L-36 is produced in the basal cells as free cytosolic protein, then becomes progressively aggregated into the granular inclusions of the spiny and granular cells, and is eventually transferred onto the cytoplasmic surface of the squamous cell plasma membrane where it may interact with complementary glycoconjugate(s) located at this site. The membrane lining substance thus formed may play a role in stabilizing the squamous cell membranes, thereby maintaining the structural integrity of the epithelium against mechanical stress coming from the esophageal lumen.  相似文献   

20.
Summary Electron microscopy of testicular biopsies obtained from two adult males with tunica vaginal hydrocele revealed some protrusions from the basal lamina to the germinal epithelium in the seminiferous tubule. The protrusions were of three types: some between the spermatogonia and Sertoli cells, some directly within the Sertoli cell cytoplasm and others inside the spermatogonia. The protrusions inside the spermatogonia were only 0.5 m deep whereas the other types were from 1–11 m deep. Occasionally some cut off portions of these protrusions were seen inside the ground cytoplasm of the Sertoli cell without an apparent connection with the original stalk. The matrix of the protrusions contained a homogenous component (composed of a fine filamentous element) and granular and membranous components. These components closely resemble the materials found in the basal lamina of the seminiferous tubule. It has been suggested that under mild pathological conditions, i.e., hydrocele, the junctions between the seminiferous tubule epithelium and the basal lamina become somewhat more flexible. As a result, the protrusions become longer and a passage might be formed to allow the flow of raw materials in or out of the seminiferous tubule.This work was supported by USPHS Research Grant HD-03266 and GRS 94802  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号