首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U937 human myeloid leukemia cells respond to mild treatment with hydrogen peroxide and hyperthermia by undergoing apoptosis, an active mode of cell suicide. Higher concentrations of hydrogen peroxide, or longer incubation at the hyperthermic temperature, change the mode of cell death from apoptosis to the passive necrosis. Stress treatments cause a severe drop in the intracellular NAD concentration. 3-Aminobenzamide (3-ABA), a specific inhibitor of poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme which is activated by breaks in DNA to catabolize intracellular NAD, is capable of relieving such a drop. This suggests that breaks in DNA have been induced by both oxidative stress and heat shock, thereby activating PARP. Upon stress, NAD concentration has a first initial sharp drop; then, for mild stress treatments, it recovers, just when apoptosis begins to be detectable (8 h of recovery). At 20 h, when the apoptotic ladder-like pattern of DNA is visible, NAD concentration has dropped again, probably because of a second PARP activation due to the extensive DNA degradation that accompanies apoptosis. The presence of 3-ABA, concomitantly with the preservation of the intracellular NAD content, reduces the extent of apoptosis upon oxidative stress and strongly enhances cell survival, thus suggesting a role for PARP in triggering stress-induced apoptosis. All apoptotic U937 cells have a reduced NAD content, independently of the inducing agent; however, upon treatments which do not cause immediate DNA breaks, the drop in NAD concentration occurs only after the apoptotic ladder is detectable and can be ascribed to the activation of PARP by the free ends of DNA formed during the endonucleolitic degradation. Moreover, in these instances the inhibition of PARP, although effective in blocking the drop in NAD concentration, has no effect on apoptosis, thus being only circumstantial.  相似文献   

2.
We have previously reported that ricin, a toxic lectin that inhibits protein synthesis induced apoptotic cell death. In this study, we have found that isolated ricin CM-B-chain, which has no effect on cellular protein synthesis, induced DNA fragmentation in U937 cells in a dose- and time-dependent manner, albeit it required a longer incubation time and higher concentration than those of holotoxin ricin. Z-Asp-CH2-DCB, a caspase family inhibitor and serine protease inhibitor, 3,4-dichloroisocoumarine (DCI) effectively inhibited the CM-B-chain-mediated DNA fragmentation as well as in ricin. Thus, like ricin, multiple proteases with different substrate specificity may also be involved in the CM-B-chain-mediated apoptotic pathway. Furthermore, BFA inhibited both ricin- and CM-B-chain-mediated DNA fragmentation, suggesting an intracellular vesicle transport system through the Golgi complex may be involved in the apoptotic induction by these proteins as a common feature. On the other hand, cycloheximide (CHA) strongly increased the CM-B-chain-mediated DNA fragmentation, but inhibited ricin-mediated DNA fragmentation. The opposite effects of CHA may reflect the difference in the apoptotic mechanism between ricin and CM-B-chain. In conclusion, our results suggest that ricin-B-chain can induce apoptosis through its lectin activity, but the underlying mechanism may be distinct from that of ricin in which the A-chain contributes profoundly to the apoptotic induction.  相似文献   

3.
An early transient burst of poly(ADP-ribosyl)ation of nuclear proteins was recently shown to be required for apoptosis to proceed in various cell lines (Simbulan-Rosenthal, C., Rosenthal, D., Iyer, S., Boulares, H., and Smulson, M. (1998) J. Biol. Chem. 273, 13703-13712) followed by cleavage of poly(ADP-ribose) polymerase (PARP), catalyzed by caspase-3. This inactivation of PARP has been proposed to prevent depletion of NAD (a PARP substrate) and ATP, which are thought to be required for later events in apoptosis. The role of PARP cleavage in apoptosis has now been investigated in human osteosarcoma cells and PARP -/- fibroblasts stably transfected with a vector encoding a caspase-3-resistant PARP mutant. Expression of this mutant PARP increased the rate of staurosporine and tumor necrosis factor-alpha-induced apoptosis, at least in part by reducing the time interval required for the onset of caspase-3 activation and internucleosomal DNA fragmentation, as well as the generation of 50-kilobase pair DNA breaks, thought to be associated with early chromatin unfolding. Overexpression of wild-type PARP in osteosarcoma cells also accelerated the apoptotic process, although not to the same extent as that apparent in cells expressing the mutant PARP. These effects of the mutant and wild-type enzymes might be due to the early and transient poly(ADP-ribose) synthesis in response to DNA breaks, and the accompanying depletion of NAD apparent in the transfected cells. The accelerated NAD depletion did not seem to interfere with the later stages of apoptosis. These results indicate that PARP activation and subsequent cleavage have active and complex roles in apoptosis.  相似文献   

4.
We have found that the antioxidant N-acetylcysteine (NAC) strongly inhibited ricin-induced apoptotic cell death in U937 cells (human myeloid leukemia), as judged by cytotoxicity, nuclear morphological change, and DNA fragmentation. Consistent with these observations, a significant depletion of cellular glutathione was observed in ricin-treated cells, and NAC prevented the decrease in cellular glutathione. On the other hand, among the caspase inhibitors tested, Z-Asp-CH2-DCB, which inhibited ricin cytotoxicity, also suppressed ricin-mediated glutathione depletion, while NAC did not affect the generation of caspase-3 like activity in ricin-treated cells. These results suggest that glutathione loss takes place downstream from caspase activation during the ricin-induced apoptotic process. Treatment with a specific inhibitor of glutathione biosynthesis, buthionine sulfoximine (BSO) failed to induce apoptosis, and had no effect on the overall extent of ricin-induced apoptosis, even though the glutathione level was decreased to less than 5% of the control level. However, NAC still protected against ricin-induced apoptosis in the BSO-treated cells. We conclude that glutathione loss is one of several apoptotic changes caused by ricin, but is not a sufficient factor for the progress of apoptosis. NAC may prevent ricin-induced apoptosis through maintaining an intracellular reducing condition by acting as a thiol supplier.  相似文献   

5.
We have found that a brefeldin A (BFA)-resistant mutant cell line derived from Vero cells (BER-40) is highly resistant to ricin-induced apoptosis as compared with parental Vero cells. In BER-40 cells, all apoptotic events caused by ricin including cytolysis, nuclear morphological changes, and DNA fragmentation occur to a lesser extent than in Vero cells, even though both cell lines show similar sensitivities to ricin-mediated inhibition of protein synthesis. Furthermore, no significant apoptotic signaling events, such as increases in caspase-3 and -9-like activities, release of cytochrome c from mitochondria, or the cleavage of PARP, were observed in BER-40 cells under the conditions at which these changes were evident in Vero cells. Intracellular biochemical changes associated with ricin-induced apoptosis, such as the depletion of glutathione and an increase in free Zn2+, were also less apparent in BER-40 cells than in Vero cells. BER-40 cells were also found to be highly resistant to apoptosis induced by other toxins with different intoxication mechanisms such as diphtheria toxin, modeccin, and anisomycin. These results suggest that the entire apoptotic signal transduction mechanism in BER-40 cells, which may be triggered after the inhibition of protein synthesis by toxins, becomes resistant. Since MDCK cells, a naturally BFA resistant cell line, are highly sensitive to ricin-induced apoptosis, it seems likely that the BFA resistance phenotype may not necessarily lead to resistance to apoptotic cell death. Probably the underlaying BFA-resistance mechanism in BER-40 cells is distinct from that in MDCK cells, and the resistance to ricin-induced apoptosis of BER-40 cells may be a unique phenotype acquired concomitantly with BFA-resistance.  相似文献   

6.
Ultraviolet light (UV) induced rapid apoptosis of U937 leukemia cells, concurrent with DNA fragmentation and cleavage of poly(ADP-ribose)polymerase (PARP) by activated caspase-3. Thein vitroreconstitution of intact HeLa S3 nuclei and apoptotic U937 cytosolic extract (CE) revealed that (i) Ca2+/Mg2+-dependent, Zn2+-sensitive endonuclease activated in the apoptotic CE induced DNA ladder in HeLa nuclei at pH 6.8–7.4, (ii) activated caspase-3 cleaved PARP in HeLa nuclei, and (iii) when the apoptotic CE was treated with the caspase-3 inhibitor (1 μM Ac-DEVD-CHO) or the caspase-1 inhibitor (10 μM Ac-YVAD-CHO), the former, but not the latter, caused a 50% inhibition of DNA fragmentation and the complete inhibition of PARP cleavage in HeLa nuclei. Similarly, Ac-DEVD-CHO (100 μM) inhibited apoptosis and DNA ladder by 50% and PARP cleavage completely in UV-irradiated U937 cells, but Ac-YVAD-CHO (100 μM) did not. Thus, UV-induced apoptosis of U937 cells involves the Ca2+/Mg2+-dependent endonuclease pathway and the caspase-3–PARP cleavage–Ca2+/Mg2+-dependent endonuclease pathway. The former pathway produced directly 50% of apoptotic DNA ladder, and the latter involved activated caspase-3 and PARP cleavage, followed by formation of the remaining 50% DNA ladder by the activated endonuclease. In UV-irradiated B-cell lines, further, p53-dependent increase of Bax resulted in a greater caspase-3 activation compared to its absence. However, UV-induced activation of JNK1 and p38 was not affected by the caspase-1 and -3 inhibitors in U937 cells, so that caspases-1 and -3 do not function upstream of JNK1 and p38.  相似文献   

7.
Horton JK  Stefanick DF  Wilson SH 《DNA Repair》2005,4(10):1111-1120
The activity of poly(ADP-ribose) polymerase (PARP) is highly stimulated following DNA damage resulting in formation of DNA nicks and strand breaks. This leads to modification of numerous proteins, including itself, using NAD(+) as substrate and to exhaustion of intracellular ATP. A highly cytotoxic concentration of the DNA methylating agent methyl methanesulfonate (MMS) results in cellular ATP depletion and cell death primarily by necrosis in both wild-type and DNA polymerase beta null mouse fibroblasts. The loss of ATP can be prevented by the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN), and now cells die by an energy-dependent apoptotic pathway. We find that inhibition of PARP activity transforms a sub-lethal exposure to MMS into a highly cytotoxic event. Under this condition, ATP is not depleted and cell death is by apoptosis. The caspase inhibitor, Z-VAD, shifts the mechanism of cell death to necrosis indicating a caspase-dependent component of the apoptotic cell death. Co-exposure to the Chk1 inhibitor UCN-01 also produces a decrease in apoptotic cell death, but now there is an increase in viable cells and an enhancement in long-term survival. Taken together, our results suggest that inhibition of PARP activity, induced as a result of low dose MMS exposure, signals via a Chk1-dependent pathway for cell death by apoptosis.  相似文献   

8.
Oxidative stress induced by tert-butyl hydroperoxide (tBOOH) in freshly isolated rat hepatocytes caused DNA damage and loss of membrane integrity. Such DNA lesions are likely to be single strand breaks since neither caryolysis nor chromatine condensation was seen in electron micrographs from tBOOH-treated cells. In addition, pulsed field gel electrophoresis of genomic DNA from both control and tBOOH-treated hepatocytes showed similar profiles, indicating the absence of internucleosomal DNA cleavage, a classical reflection of apoptotic endonuclease activity. The activation of the repair enzyme poly(ADP-ribose)polymerase (PARP) following DNA damage by tBOOH induced a dramatic drop in both NAD(+) and ATP. The inhibition of PARP by 3-aminobenzamide enhanced DNA damage by tBOOH, restored NAD(+) and ATP levels, but did not result in better survival against cell killing by tBOOH. The lack of the protective effect of PARP inhibitor, therefore, does not implicate PARP in the mechanism of tBOOH-induced cytotoxicity. Electron micrographs also show no mitochondrial swelling in cells under oxidative stress, but such organelles were mainly located around the nucleus, a picture already observed in autoschizis, a new suggested kind of cell death which shows both apoptotic and necrotic morphological characteristics.  相似文献   

9.
Activation of poly(ADP-ribose) polymerase (PARP) by DNA breaks catalyzes poly(ADP-ribosyl)ation and results in depletion of NAD+ and ATP, which is thought to induce necrosis. Proteolytic cleavage of PARP by caspases is a hallmark of apoptosis. To investigate whether PARP cleavage plays a role in apoptosis and in the decision of cells to undergo apoptosis or necrosis, we introduced a point mutation into the cleavage site (DEVD) of PARP that renders the protein resistant to caspase cleavage in vitro and in vivo. Here, we show that after treatment with tumor necrosis factor alpha, fibroblasts expressing this caspase-resistant PARP exhibited an accelerated cell death. This enhanced cell death is attributable to the induction of necrosis and an increased apoptosis and was coupled with depletion of NAD+ and ATP that occurred only in cells expressing caspase-resistant PARP. The PARP inhibitor 3-aminobenzamide prevented the NAD+ drop and concomitantly inhibited necrosis and the elevated apoptosis. These data indicate that this accelerated cell death is due to NAD+ depletion, a mechanism known to kill various cell types, caused by activation of uncleaved PARP after DNA fragmentation. The present study demonstrates that PARP cleavage prevents induction of necrosis during apoptosis and ensures appropriate execution of caspase-mediated programmed cell death.  相似文献   

10.
Overproduction of reactive oxygen species is one of the major causes of cell death in ischemic-reperfusion (I/R) injury. In I/R animal models, electron microscopy (EM) has shown mixed apoptotic and necrotic characteristics in the same cardiomyocyte. The present study shows that H(2)O(2) activates both apoptotic and necrotic machineries in the same myocyte and that the ultrastructure seen using EM is very similar to that in I/R animal studies. The apoptotic component is caused by the activation of clotrimazole-sensitive, NAD(+)/ADP ribose/poly(ADP-ribose) polymerase (PARP)-dependent transient receptor potential M2 (TRPM2) channels, which induces mitochondrial [Na(+)](m) (and [Ca(2+)](m)) overload, resulting in mitochondrial membrane disruption, cytochrome c release, and caspase 3-dependent chromatin condensation/fragmentation. The necrotic component is caspase 3-independent and is caused by PARP-induced [ATP](i)/NAD(+) depletion, resulting in membrane permeabilization. Inhibition of either TRPM2 or PARP activity only partially inhibits cell death, while inhibition of both completely prevents the ultrastructural changes and myocyte death.  相似文献   

11.
Following discovery of NAD(+)-dependent reactions that control gene expression, cytoprotection, and longevity, there has been a renewed therapeutic interest in precursors, such as nicotinamide and its derivatives. We tested 20 analogues of nicotinamide for their ability to protect endothelial cells from peroxynitrite stress and their effect on poly (ADP-ribose) polymerase (PARP) activity. Several nicotinamide derivatives protected endothelial cells from peroxynitrite-induced depletion of cellular NAD(+) and ATP concentrations, but only some of these compounds inhibited PARP. We conclude that some nicotinamide derivatives provide protection of endothelial cells against peroxynitrite-induced injury independent of inhibition of PARP activity. Preservation of the NAD(+) pool was a common effect of these compounds.  相似文献   

12.
13.
Alkylating agents cause a marked depletion of cellular NAD+ levels by activating nuclear ADP-ribosyl transferase (ADPRT), which utilizes NAD+ as a substrate in the synthesis of poly(ADP-ribose). As a consequence of NAD+ depletion, it is possible that cellular ATP pools could be depleted. Because of this, exogenously supplied NAD+ had been proposed as a way to counteract some of the effects of an alkylator. We found that exogenously supplied NAD+ significantly increased intracellular levels of NAD+ in MMS- and MNNG-treated V79 Chinese hamster cells. Cytotoxicity was not changed by the exogenously supplied NAD+, however. 3-Aminobenzamide (3-ABA), an ADPRT inhibitor, prevented the depletion of intracellular NAD+ by MMS or MNNG treatment and potentiated cytotoxicity. As was the case without 3-ABA, exogenously supplied NAD+ plus 3-ABA did not change the cytotoxicity, even though NAD+ levels were increased. Intracellular ATP levels were also measured and were found to be unaffected following MMS treatment, and only slightly depleted following MNNG treatment. Exogenously supplied NAD+ raised these levels above those for their respective controls. Because survival was unaffected by elevated levels of NAD+ and ATP, our results suggest that depletion of cellular NAD+ pools following MMS and MNNG treatment is not a critical factor in determining cytotoxicity for these V79 cells. The energy reserves of V79 cells, at doses of MMS or MNNG which kill 99% of the cells, are apparently adequate to maintain normal levels of ATP.  相似文献   

14.
We isolated a novel apoptosis-inducing component, tryptophol, from vinegar produced from boiled extract of black soybean (black soybean vinegar). Compound-6 purified from an ethyl acetate extract of black soybean vinegar using high performance liquid chromatography (HPLC) induced fragmentation of DNA and the development of apoptotic bodies (characteristic physiological features of apoptosis) in U937 cells. By analysis of chemical structure, this active compound was identified as tryptophol. Tryptophol induced apoptosis involving caspase-8 and -3 activation, followed by cleavage of poly (ADP-ribose) polymerase (PARP), as shown by measurement of enzyme activity and immunoblot analysis. The cell viability of normal lymphocytes separated from human blood was less affected by tryptophol, and fragmentation of DNA was not induced in normal lymphocytes. These results indicate that tryptophol isolated from black soybean vinegar inhibited the proliferation of U937 cells by inducing apoptosis via a pathway involving caspase-8 followed by caspase-3, without affecting normal lymphocytes.  相似文献   

15.
L Dubrez  I Savoy  A Hamman    E Solary 《The EMBO journal》1996,15(20):5504-5512
We investigated the role of proteases in the pathway that leads from specific DNA damage induced by etoposide (VP-16), a topoisomerase II inhibitor, to apoptotic DNA fragmentation in the U937 human leukemic cell line. In a reconstituted cell-free system, Triton-soluble extracts from VP-16-treated cells induced internucleosomal DNA fragmentation in nuclei from untreated cells. This effect was inhibited by the tetrapeptide Ac-DEVD-CHO, a competitive inhibitor of the interleukin-1 beta-converting enzyme (ICE)-related protease CPP32, but was not influenced by Ac-YVAD-CHO and Ac-YVAD-CMK, two specific inhibitors of ICE. The three tetrapeptides inhibited Fas-mediated apoptotic DNA fragmentation in the cell-free system. Internucleosomal DNA fragmentation, triggered by either VP-16 or an anti-Fas antibody, was associated with proteolytic cleavage of the poly(ADP-ribose)polymerase (PARP), a decrease in the level of 32 kDa CPP32 proenzyme and the appearance of the CPP32 p17 active subunit. Conversely, the expression of Ich-1L, another ICE-like protease, remained stable in apoptotic U937 cells. Several cysteine and serine protease inhibitors prevented apoptotic DNA fragmentation by acting either upstream or downstream of the DEVD-sensitive protease(s) activation and PARP cleavage. We conclude that a DEVD-sensitive step, which could involve CPP32, plays a central role in the proteolytic pathway that mediates apoptotic DNA fragmentation in VP-16-treated leukemic cells at the crossing with Fas-mediated pathway.  相似文献   

16.
Free radicals and other reactive species generated during reperfusion of ischemic tissues may cause DNA damage and, consequently, the activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP). An excessive PARP activation may result in a depletion of intracellular NAD + and ATP, hence cell suffering and, ultimately, cell death. The present study is aimed at clarifying the role of PARP in a heart transplantation procedure and the contribution of myocyte necrosis and/or apoptosis to this process. In our experimental model, rat heart subjected to heterotopic transplantation, low temperature global ischemia (2 h) was followed by an in vivo reperfusion (30 or 60 &#117 min). Under these conditions clear signs of oxidative stress, such as lipoperoxidation and DNA strand breaks, were evident. In addition to a marked activation, accompanied by a significant NAD + and ATP depletion, PARP protein levels significantly increased after 60 &#117 min of reperfusion. Ultrastructural analysis showed nuclear clearings, intracellular oedema and plasma membrane discontinuity. Other relevant observations were the absence of typical signs of apoptosis like caspase-3 activation and PARP cleavage, random DNA fragmentation, rise in serum levels of heart damage markers. Our results suggest that during heart transplantation, the activation of PARP, causing energy depletion, results in myocardial cell injury whose dominant feature, at least in our experimental model, is necrosis rather than apoptosis.  相似文献   

17.
Kim MS  Lee J  Lee KM  Yang SH  Choi S  Chung SY  Kim TY  Jeong WH  Park R 《Life sciences》2003,73(10):1231-1243
Mistletoe lectin-II, a major component of Korean mistletoe (Viscum album var. coloratum) induces apoptotic death in cancer cells. In this study, we demonstrated that lectin-II induced the generation of pro-oxidants and thus resulted in the apoptotic death of human myeloleukemic U937 cells. We observed that lectin-II-induced apoptotic death was inhibited by antioxidants including reduced glutathione (GSH), N-acetylcysteine (NAC), ebselen, mnTBP, catalase and pyrrolidine dithiocarbamate (PDTC). GSH and NAC also abolished the apoptotic DNA ladder pattern fragmentation of U937 cells after lectin-II stimulation. Obviously, lectin-II treatment of cells resulted in a remarkable generation of intracellular hydrogen peroxide (H2O2) as an early event, which was monitored fluorimetrically using scopoletin-horse radish peroxidase (HRP) assay and peroxide-sensitive fluorescent probe, DCF-DA. In addition, antioxidants inhibited the activation of c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK) as well as cytosolic release of cytochrome c by mistletoe lectin-II. Moreover, lectin-II-induced activation of caspase-9 and 3-like protease and cleavage of poly(ADP-ribose) polymerase (PARP) were inhibited by pretreatment of cells with thiol antioxidants, GSH and NAC. Taken together, these results suggest that Korean mistletoe lectin-II is a strong inducer of pro-oxidant generation such as H2O2, which mediates the JNK/SAPK activation, cytochrome c release, activation of caspase-9 and caspase 3-like protease, and PARP cleavage in human myeloleukemic U937 cells.  相似文献   

18.
We found that the treatment with 1 mM butyric acid for 2 days renders Vero cells highly sensitive to ricin-induced apoptosis reflected by cytolysis concomitant with apoptotic cellular and nuclear morphological changes, DNA fragmentation, and increase in caspase-3 like activity, whereas butyric acid alone had no cytotoxic effect on Vero cells. During the treatment with butyric acid, gradual increase in alkaline phosphatase activity, an indicator for butyric acid-induced differentiation, was observed in Vero cells. Although the potency of ricin-mediated protein synthesis was increased in butyric acid-treated Vero cells as compared to untreated cells, the binding and internalization of ricin to the cells were not much affected. Furthermore, DNA fragmentation caused by other protein synthesis inhibitors such as diphtheria toxin and anisomysin were also highly potentiated in butyric acid-treated Vero cells, whereas the potencies of these toxins to inhibit the protein synthesis were not affected by butyric acid treatment. These results suggest that the apoptosis signaling pathway, which may be triggered by cytotoxic stress response caused by toxins, is sensitized in butyric acid-treated cells, while the pathways leading to the protein synthesis inhibition by these toxins are relatively unchanged. No significant differences in the expression levels of p21, p53, and Bcl-2 proteins were observed between butyric acid-treated and untreated Vero cells. The treatment with ricin resulted in the activation of p38 MAP kinase, and this activation occurred on an accelerated time schedule in butyric acid-treated Vero cells than in untreated cells. The specific inhibitor of p38 MAP kinase SB203580 showed a partial inhibitory effect on ricin-induced apoptosis in control Vero cells, but it was less effective in butyric acid-treated Vero cells. Taken together, our results suggest that butyric acid-treatment may result in sensitization of multiple intracellular signal transduction pathways including apoptotic signaling pathways and p38 MAP kinase pathway.  相似文献   

19.
Pyridine nucleotides are critical during oxidative stress due to their roles in reductive reactions and energetics. The aim of the present study was to examine pyridine nucleotide changes in six brain regions of mice after an intracerebroventricular injection of the oxidative stress inducing agent, t-butyl hydroperoxide (t-BuOOH). A secondary aim was to investigate the correlation between NAD+ levels and DNA fragmentation. Here, we demonstrate that t-BuOOH induced a rapid oxidation of NADPH and a slow depletion of NAD+ in most brain regions. A slight increase in NADH also occurred in five brain regions. NAD+ depletion was associated with increased DNA fragmentation. This suggests the initiation of a death cascade involving poly(ADP-ribose) polymerase (PARP), NAD+, ATP depletion and consequent cell death in brain tissue. PARP activity was accelerated in some brain regions after 20 min of oxidative stress. To counteract oxidative stress induced toxicity, NAD+ levels were increased in the brain using an intraperitoneal injection of nicotinamide. A surplus of brain NAD+ prevented DNA fragmentation in some brain regions. Nicotinamide administration also resulted in higher brain NADH, NADP+ and NADPH levels in some regions. Their synthesis was further upregulated during oxidative stress. Nicotinamide as a precursor for NAD+ may provide a useful therapeutic strategy in the treatment of neurodegeneration.  相似文献   

20.
TAS-103, a new anticancer drug, induces DNA cleavage by inhibiting the activities of topoisomerases I and II. We investigated the mechanism of TAS-103-induced apoptosis in human cell lines. Pulsed field gel electrophoresis revealed that in the leukemia cell line HL-60 and the H(2)O(2)-resistant subclone, HP100, TAS-103 induced DNA cleavage to form 1-2-Mb fragments at 1 h to a similar extent, indicating that the DNA cleavage was induced independently of H(2)O(2). TAS-103-induced DNA ladder formation in HP100 cells was delayed compared with that seen at 4 h in HL-60 cells, suggesting the involvement of H(2)O(2)-mediated pathways in apoptosis. Flow cytometry revealed that H(2)O(2) formation preceded increases in mitochondrial membrane potential (DeltaPsim) and caspase-3 activation. Inhibitors of poly(ADP-ribose) polymerase (PARP) prevented both TAS-103-induced H(2)O(2) generation and DNA ladder formation. The levels of NAD(+), a PARP substrate, were significantly decreased in HL-60 cells after a 3-h incubation with TAS-103. The decreases in NAD(+) levels preceded both increases in DeltaPsim and DNA ladder formation. Inhibitors of NAD(P)H oxidase prevented TAS-103-induced apoptosis, suggesting that NAD(P)H oxidase is the primary enzyme mediating H(2)O(2) formation. Expression of the antiapoptotic protein, Bcl-2, in BJAB cells drastically inhibited TAS-103-induced apoptosis, confirming that H(2)O(2) generation occurs upstream of mitochondrial permeability transition. Therefore, these findings indicate that DNA cleavage by TAS-103 induces PARP hyperactivation and subsequent NAD(+) depletion, followed by the activation of NAD(P)H oxidase. This enzyme mediates O(2)(-)-derived H(2)O(2) generation, followed by the increase in DeltaPsim and subsequent caspase-3 activation, leading to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号