首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous biochemical studies suggested that HIV-1-encoded Vpr may kill cells through an effect on the adenine nucleotide translocase (ANT), thereby causing mitochondrial membrane permeabilization (MMP). Here, we show that Vpr fails to activate caspases in conditions in which it induces cell killing. The knock-out of essential caspase-activators (Apaf-1 or caspase-9) or the knock-out of a mitochondrial caspase-independent death effector (AIF) does not abolish Vpr-mediated killing. In contrast, the cytotoxic effects of Vpr are reduced by transfection-enforced overexpression of two MMP-inhibitors, namely the endogenous protein Bcl-2 or the cytomegalovirus-encoded ANT-targeted protein vMIA. Vpr, which can elicit MMP through a direct effect on mitochondria, and HIV-1-Env, which causes MMP through an indirect pathway, exhibit additive (but not synergic) cytotoxic effects. In conclusion, it appears that Vpr induces apoptosis through a caspase-independent mitochondrial pathway.  相似文献   

2.
3.
Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.  相似文献   

4.
In the current study, we evaluated the mechanism of action of miltefosine, which is the first effective and safe oral treatment for visceral leishmaniasis, in Leishmania amazonensis promastigotes. Miltefosine induced a process of programmed cell death, which was determined by the externalization of phosphatidylserine, the incorporation of propidium iodide, cell-cycle arrest at the sub-G0/G1 phase and DNA fragmentation into oligonucleosome-sized fragments. Despite the intrinsic variation that is detected in Leishmania spp, our results indicate that miltefosine causes apoptosis-like death in L. amazonensis promastigote cells using a similar process that is observed in Leishmania donovani.  相似文献   

5.
Oligochitosan has been proved to trigger plant cell death. To gain some insights into the mechanisms of oligochitosan-induced cell death, the nature of oligochitosan-induced cell death and the role of calcium (Ca2+), nitric oxide (NO) and hydrogen peroxide (H2O2) were studied in tobacco suspension cells. Oligochitosan-induced cell death occurred in cytoplasmic shrinkage, phosphatidylserine externalization, chromatin condensation, TUNEL-positive nuclei, cytochrome c release and induction of programmed cell death (PCD)-related gene hsr203J, suggesting the activation of PCD pathway. Pretreatment cells with cyclosporin A, resulted in reducing oligochitosan-induced cytochrome c release and cell death, indicating oligochitosan-induced PCD was mediated by cytochrome c. In the early stage, cells undergoing PCD showed an immediate burst in free cytosolic Ca2+ ([Ca2+]cyt) elevation, NO and H2O2 production. Further study showed that these three signals were involved in oligochitosan-induced PCD, while Ca2+ and NO played a negative role in this process by modulating cytochrome c release.  相似文献   

6.
Pheromone induces programmed cell death in S. cerevisiae   总被引:9,自引:0,他引:9  
  相似文献   

7.
8.
The programmed cell death inducing effect of the EGF receptor tyrosine kinase inhibitor α-cyano-3,4-dihydroxycinnamthioamide (AG213) was investigated in vitro on HT-29 human colon tumor. AG213 at concentrations between 45 to 450 μM blocks the proliferation of HT-29 cells. Morphological findings suggest that the selective tyrosine kinase inhibitor AG213 induces Clarke III type (non-lysosomal vesiculate cytoplasmic) programmed cell death; unlike ATP analog non-selective tyrosine kinase inhibitors like Genistein which were found to induce apoptosis. Cycloheximide and Actinomycin-D reduced the effect of AG213 pointing to the fact that protein and RNA synthesis are also needed for this form of cell death. Acid phosphatase activity was found in the Golgi and in the newly formed intracytoplasmic vacuoles 3 hours after AG213 treatment which disappeared by 6 hours. The induction of Clarke III cell death by tyrosine kinase inhibitors may open a new modality to selective killing of tumor cells.  相似文献   

9.
Salt stress induces programmed cell death in prokaryotic organism Anabaena   总被引:5,自引:0,他引:5  
AIMS: Our main interest is to check if programmed cell death (PCD) can occur in prokaryotic algae and if the morphological and biochemical features of PCD are conserved. METHODS AND RESULTS: Using TUNEL labelling, fluorescence and light microscopy and DNA gel electrophoresis, we found that cell death with features similar to those in metazoan PCD could be induced in different Anabaena strains after exposure to univalent-cation salts at moderate concentration. These features included specific DNA fragmentation, cytoplasmic vacuolation, and the progressive disorganization, fragmentation and subsequent autolysis of the cell corpse. Further analyses of cell viability and proteinase activity revealed that increased protease activities, decreased DNA content, and loss of plasmalemma integrity were related to the PCD process. CONCLUSIONS: The results showed that like PCD in eukaryotes, PCD in Anabaena is an active process, and is an adaptation to adverse environments. The features of PCD shared between eukaryotes and Anabaena suggest that PCD mechanisms are conserved during evolution. SIGNIFICANCE AND IMPACT OF THE STUDY: The results will contribute greatly to our understanding of PCD origin and evolution, and are potentially useful in controlling the deluge of algae in some lakes.  相似文献   

10.
Cell cycle is one of the most complex processes in the life of a dividing cell. It involves numerous regulatory proteins, which direct the cell through a specific sequence of events for the production of two daughter cells. Cyclin-dependent kinases (cdks), which complex with the cyclin proteins, are the main players in the cell cycle. They can regulate the progression of the cells through different stages regulated by several proteins including p53, p21(WAF1), p19, p16, and cdc25. Downstream targets of cyclin-cdk complexes include pRB and E2F. A cell cycle can be altered to the advantage of many viral agents, most notably polyomaviruses, papillomaviruses, adenoviruses, and retroviruses. In addition, viral protein R (Vpr) is a protein encoded by the human immunodeficiency virus type 1 (HIV-1). HIV-1, the causative agent of acquired immunodeficiency syndrome (AIDS), is a member of the lentivirus class of retroviruses. This accessory protein plays an important role in the regulation of the cell cycle by causing G(2) arrest and affecting cell cycle regulators. Vpr prevents infected cells from proliferating, and collaborates with the matrix protein (MA) to enable HIV-1 to enter the nucleus of nondividing cells. Studies from different labs including ours showed that Vpr affects the functions of cell cycle proteins, including p53 and p21(WAF1). Thus, the replication of HIV-1, and ultimately its pathogenesis, are intrinsically tied to cell-cycle control.  相似文献   

11.
Viral protein R (Vpr), one of the human immunodeficiency virus type 1 (HIV-1) accessory proteins, contributes to multiple cytopathic effects, G2 cell cycle arrest and apoptosis. The mechanisms of Vpr have been intensely studied because it is believed that they underlie HIV-1 pathogenesis. We here report a cell-based small molecule screen on Vpr induced cell death in the context of HIV-1 infection. From the screen of 504 bioactive compounds, we identified damnacanthal (Dam), a component of noni [corrected] as an inhibitor of Vpr induced cell death. Our studies illustrate a novel efficient platform for drug discovery and development in anti-HIV therapy which should also be applicable to other viruses.  相似文献   

12.
The present study focused on the effects of simulated microgravity on the human follicular thyroid carcinoma cell line ML-1. Cultured on a three-dimensional clinostat ML- 1 cells formed three-dimensional multicellular tumor spheroids (MCTS: 0.3 +/= 0.01mm in diameter). Furthermore, ML-1 cells grown on the clinostat showed elevated amounts of the apoptosis-associated Fas protein, of p53 and of bax, but reduced quantities of bcl-2. In addition, signs of apoptosis as assessed by TdT-mediated DUTP digoxigenin nick end labeling, DAPI staining, DNA laddering and 85-kDa apoptosis-related DNA fragments became detectable. The latter ones resulted from enhanced 116-kDa poly(ADP-ribose)polymerase activity. Electron microscopy revealed all morphological signs of apoptosis. Caspase 3 was clearly upregulated. In conclusion, our experiments show that conditions of simulated microgravity induce early programmed cell death and use different pathways of apoptosis.  相似文献   

13.
We present evidence that a delta-endotoxin isolated from Bacillus thuringiensis subsp.israelensis induces programmed cell death in polytene midgut cells of Culex pipiens larvae. After exposure to toxin, polytene nuclei in the anterior region of the larval midgut undergo many of the morphological and physiological changes which are characteristic of apoptosis, including the ability to stain with the vital dye, acridine orange, and fragmentation of nuclear DNA as demonstrated by agarose gel electrophoresis and in situ TUNEL labeling. The temporal sequence of toxin ingestion, acridine orange staining and larval death suggests a cause and effect relationship between programmed cell death and larval death. Amino sugars that interfere with toxicity also interfere with the time course of acridine orange staining of larval polytene nuclei. The toxin first causes programmed cell death of anterior midgut and gastric caeca cells and, subsequently, posterior midgut cells. This pattern is similar to the temporal sequence of larval polytene cell death that occurs during metamorphosis. From the size and distribution of the nuclei that are stained with acridine orange, it appears that only polytene midgut cells are affected by toxin and that the diploid regenerative cell are not affected.  相似文献   

14.
Malerba M  Cerana R  Crosti P 《Protoplasma》2003,222(3-4):113-116
Summary. Programmed cell death plays a pivotal role in several developmental processes of plants and it is involved in the response to environmental stresses and in the defense mechanisms against pathogen attack. It has not yet been defined which part of the death signalling mechanism and which molecules involved in programmed cell death are common to animals and plants. In this paper we show that fusicoccin, a well-known phytotoxin, induces a strong acceleration in the appearance of Evans Blue-stainable (dead) cells in sycamore (Acer pseudoplatanus L.) cultures. This fusicoccin-induced cell death shows aspects common to the form of animal programmed cell death termed apoptosis: i.e., cell shrinkage, changes in nucleus morphology, increase in DNA fragmentation detectable by a specific immunological reaction, and presence of oligonucleosomal-size fragments (laddering) in DNA gel electrophoresis. Since fusicoccin has a well-identified molecular target, the plasma membrane H+-ATPase, and thoroughly investigated physiological effects, this toxin appears to be a useful tool to study the transduction of death signals leading to programmed cell death in plants.Correspondence and reprints: Dipartimento di Biotecnologie e Bioscienze, Universitä degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.  相似文献   

15.
16.
Chalcone (1,3-diphenyl-2-propen-1-one) is an aromatic ketone precursor of important molecules in plants such as flavonoids or anthocyanins. Its phytotoxicity has been demonstrated on different plant species, but to date little is known about the mechanisms of action of this secondary metabolite at plant cellular level. Detailed analysis by light and transmission electron microscopy (TEM) was conducted to examine the root meristems' ultrastructure of control and chalcone-treated Arabidopsis seedlings. Mitochondrial dysfunction was analysed by measuring mitochondrial membrane potential with JC-1 fluorochrome. Finally, acridine orange/ethidium bromide staining was used for the detection of programmed cell death. Microscopy revealed tissue alterations, inhibition of root hair formation and important changes after 7 and 14 d at the chalcone IC(50) value. Chalcone-treated cells showed signs of programmed cell death such as mitochondrial condensation, disruption of organelles and chromatin fragmentation. Acridine orange/ethidium bromide staining confirmed the programmed cell death, which could be induced by the reduction of mitochondrial transmembrane potential (ΔΨ(m)) that was detected after chalcone treatment. These results confirm the phytotoxic activity of chalcone on Arabidopsis seedlings, the alteration of mitochondrial membrane potential and the induction of programmed cell death.  相似文献   

17.
African trypanosomes produce some prostanoids, especially PGD2, PGE2 and PGF2alpha (Kubata et al. 2000, J. Exp. Med. 192: 1327-1338), probably to interfere with the host's physiological response. However, addition of prostaglandin D2 (but not PGE2 or PGF2alpha) to cultured bloodstream form trypanosomes led also to a significant inhibition of cell growth. Based on morphological alterations and specific staining methods using vital dyes, necrosis and autophagy were excluded. Here, we report that in bloodstream form trypanosomes PGD2 induces an apoptosis-like programmed cell death, which includes maintenance of plasma membrane integrity, phosphatidylserine exposure, loss of mitochondrial membrane potential, nuclear chromatin condensation and DNA degradation. The use of caspase inhibitors cannot prevent the cell death, indicating that the process is caspase-independent. Based on these results, we suggest that PGD2-induced programmed cell death is part of the population density regulation as observed in infected animals.  相似文献   

18.
Recent studies pioneer the existence of a novel programmed cell death pathway in malaria parasite plasmodium and suggest that it could be helpful in developing new targeted anti-malarial therapies. Considering this fact, we evaluated the underlying action mechanism of this pathway in mefloquine (MQ) treated parasite. Since cysteine proteases play a key role in apoptosis hence we performed preliminary computational simulations to determine binding affinity of MQ with metacaspase protein model. Binding pocket identified using computational studies, was docked with MQ to identify it’s potential to bind with the predicted protein model. We further determined apoptotic markers such as mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in MQ treated/untreated parasites by cell based assay. Our results showed low mitochondrial membrane potential, enhanced activity of cysteine protease and increased number of fragmented DNA in treated parasites compared to untreated ones. We next tested the involvement of oxidative stress in MQ mediated cell death and found significant increase in reactive oxygen species generation after 24 h of treatment. Therefore we conclude that apart from hemozoin inhibition, MQ is competent to induce apoptosis in plasmodium by activating metacaspase and ROS production.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) Vpr is a 15-kDa accessory protein that contributes to several steps in the viral replication cycle and promotes virus-associated pathology. Previous studies demonstrated that Vpr inhibits G2/M cell cycle progression in both human cells and in the fission yeast Schizosaccharomyces pombe. Here, we report that, upon induction of vpr expression, fission yeast exhibited numerous defects in the assembly and function of the mitotic spindle. In particular, two spindle pole body proteins, sad1p and the polo kinase plo1p, were delocalized in vpr-expressing yeast cells, suggesting that spindle pole body integrity was perturbed. In addition, nuclear envelope structure, contractile actin ring formation, and cytokinesis were also disrupted. Similar Vpr-induced defects in mitosis and cytokinesis were observed in human cells, including aberrant mitotic spindles, multiple centrosomes, and multinucleate cells. These defects in cell division and centrosomes might account for some of the pathological effects associated with HIV-1 infection.  相似文献   

20.
Tritrichomonas foetus is an amitochondrial parasite protist which lacks typical eukaryote organelles such as mitochondria and peroxisomes, but possesses the hydrogenosome, a double-membrane-bound organelle that produces ATP. The cell death of amitochondrial organisms is poorly studied. In the present work, the cytotoxic effects of hydrogen peroxide on T. foetus and its participation on cell death were analyzed. We took advantage of several microscopy techniques, including videomicroscopy, light microscopy immunocytochemistry for detection of caspase activation, and scanning and transmission electron microscopy. We report here that in T. foetus: (1) H2O2 leads to loss of motility and induces cell death, (2) the dying cells exhibit some characteristics similar to those found during the death of other organisms, and (3) a caspase-like protein seems to be activated during the death process. Thus, we propose that, although T. foetus does not present mitochondria nor any known pathways of cell death, it is likely that it bears mechanisms of cell demise. T. foetus exhibits morphological and physiological alterations in response to H2O2 treatment. The hydrogenosome, a unique organelle which is supposed to share a common ancestral origin with mitochondria and has an important role in oxidative responses in trichomonads, is a candidate for participating in this event.Abbreviations TUNEL Terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick-end labeling - PARP Poly (ADP-ribose) polymerase - DAPI 4,6-Diamidino-2-phenylindole dihydrochloride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号