首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coexistence of species sharing the same resources is often possible if species are phylogenetically divergent in resource acquisition and allocation traits, decreasing competition between them. Developmental and life-history traits related to resource use are influenced by environmental conditions such as temperature, but thermal trait responses may differ among species. An increase in ambient temperature may, therefore, affect trait divergence within a community, and potentially species coexistence. Parasitoids are interesting models to test this hypothesis, because multiple species commonly attack the same host, and employ divergent larval and adult host use strategies. In particular, development mode (arrested or continued host growth following parasitism) has been recognized as a major organiser of parasitoid life histories. Here, we used a comparative trait-based approach to determine thermal responses of development time, body mass, egg load, metabolic rate and energy use of the coexisting Drosophila parasitoids Asobara tabida, Leptopilina heterotoma, Trichopria drosophilae and Spalangia erythromera. We compared trait values between species and development modes, and calculated trait divergence in response to temperature, using functional diversity indices. Parasitoids differed in their thermal response for dry mass, metabolic rate and lipid use throughout adult life, but only teneral lipid reserves and egg load were affected by developmental mode. Species-specific trait responses to temperature were probably determined by their adaptations in resource use (e.g. lipogenesis or ectoparasitism). Overall, trait values of parasitoid species converged at the higher temperature. Our results suggest that local effects of warming could affect host resource partitioning by reducing trait diversity in communities.  相似文献   

2.
Endoparasitoids of Anomis privata larvae include five species in three families of two orders. In this work, two species of Hymenoptera Braconidae (Cotesia sp., Microplitis sp.), one species of Ichneumonidae (Mesochorus vittator) and two species of Diptera Tachinidae (Exorista (Podotachina) sorbillans, Timavia amoena) were investigated. Of the 261 larvae of A. privata examined, 32 had a parasite, so the rate of parasitism was 12.26%. Parasitism by taxon was the highest, at 10.35% (27 individuals), in Cotesia sp. in Hymenoptera Braconidae. Parasitoids of Braconidae and Ichneumonidae were larval parasitoids. A parasitic insect of Tachinidae was a larva–pupal parasitoid. Solitary parasitoids included Microplitis sp. in Braconidae and E. sorbillans in Tachinidae. Gregarious parasitoids included Cotesia sp. in Braconidae, M. vittator in Ichneumonidae and T. amoena in Tachinidae. There was also a multiparasitoid (T. amoena) and two superparasitoids (Cotesia sp., M. vittator). A larva of A. privata sought feed even after it was parasitized every parasitoid investigated in this study, so five species of parasitoids were all koinobiont.  相似文献   

3.
Summary The relative importance of phylogenetic affinity of hosts versus their ecological characteristics in determining the composition of their parasitoid complexes was examined using the parasitoid complexes of six species of frugivorous fruit flies from Central Europe. The hosts were four Rhagoletis and two other trypetine species, ranging in their relatedness from host races to members of different genera. They also differed in ecological characteristics, utilizing host plants of three different families, and developing either as pulp- or seedfeeders inside the host fruit. These features made it feasible to test the following pair of hypotheses. The ecological hypothesis predicts that ecological traits such as host-plant and fruit fly phenologies and host-fruit texture should be more important for the composition of parasitoid complexes than the taxonomic relatedness of the fly species. Assuming that ecological relationships do not parallel phylogenetic ones, the alternative phylogenetic hypothesis predicts the opposite. In fruit and soil samples, taken between 1983 and 1989, three guilds of parasitoids comprising 20 species were found: guild 1 — koinobiotic larval parasitoids (e.g. Opius spp., which attack the host larvae but develop inside the host puparia); guild 2 — idiobiotic larval parasitoids (e.g. Pteromalus spp., which consume the host larvae at once); and guild 3 — idiobiotic puparium parasitoids (e.g. Phygadeuon spp.). Although some results support the phylogenetic hypothesis, the majority of results support the ecological hypothesis.  相似文献   

4.
1. Synovigenic parasitoids emerging with no or only a few mature oocytes could not rely on only capital resources, but also need to acquire income resources. Income resources in nature can either contribute to egg maturation as a food resource and/or create unpredictability in realised reproductive opportunities for synovigenic parasitoids. Therefore, we hypothesised such resources could affect life history traits and the risks of egg/time limitation in synovigenic parasitoids. 2. Using the Ovigeny Index, we investigated the effects of various host availability levels (unavailable, limited, and unlimited availability) and non‐host foods (water and honey) on life history traits and on the occurrence of egg/time limitation in Eretmocerus hayati, a predominant parasitoid on Bemisia tabaci. 3. The Ovigeny Index of Er. hayati was 0.28, which suggested it was a typical synovigenic species. Both host availability levels and non‐food type had major effects on life history traits of this parasitoid, but the availability of hosts for both feeding and reproduction was the key factor. Meanwhile, egg/time limitation was encountered by all wasps and its intensity varied with host availability levels. 4. Our results confirmed that the income resource and reproductive opportunity played a central role in shaping the life history and risks of egg/time limitation of a synovigenic parasitoid.  相似文献   

5.
Understanding the dynamics of potential inter- and intraspecific competition in parasitoid communities is crucial in the screening of efficient parasitoid species and for utilization of the best parasitoid species combinations. In this respect, the host-parasitoid systems, Bemisia tabaci and two parasitoids, Eretmocerus hayati (exotic) and Encarsia sophia (existing) were studied under laboratory conditions to investigate whether interference competition between the exotic and existing species occurs as well as the influence of potential interference competition on the suppression of the host B. tabaci. Studies on interspecific-, intraspecific- and self-interference competition in two parasitoid species were conducted under both rich and limited host resource conditions. Results showed that (1) both parasitoid species negatively affect the progeny production of the other under both rich and limited host resource conditions; (2) both parasitoid species interfered intraspecifically on conspecific parasitized hosts when the available hosts are scarce and; 3) the mortality of B. tabaci induced by parasitoids via parasitism, host-feeding or both parasitism and host-feeding together varied among treatments under different host resource conditions, but showed promise for optimizing control strategies. As a result of our current findings, we suggest a need to investigate the interactions between the two parasitoids on continuous generations.  相似文献   

6.
The quantity and quality of host nutrients can affect fitness‐related traits in hymenopteran parasitoids, including oogenesis. The present study tested the prediction that a high host quality will influence oogenesis‐related traits positively in synovigenic parasitoids, and that a high‐quality adult parasitoid diet can positively affect the same parameters, potentially compensating for development on low‐quality hosts. Four braconid parasitoid species with contrasting life histories are reared on a low‐quality diet [Anastrepha ludens Loew (Diptera: Tephritidae) larvae reared on mango] or a high‐quality (artificial) diet. Adult parasitoids are provided with a high‐quality (honey ad libitum), moderate‐quality (honey every other day) or low‐quality (guava pulp) diet. Generalist species that encounter high variation in host quality naturally are predicted to be more flexible in dealing with nutrient shortfalls than specialist species. By contrast to the predictions, low‐quality hosts yield parasitoids with higher egg loads in two species: Opius hirtus Fisher and Diachasmimorpha longicaudata Ashmead. However, as predicted, a high‐quality adult diet exerts a positive effect on egg load (Utetes anastrephae Viereck), egg size (Doryctobracon crawfordi Viereck) and egg maturation rate (D. longicaudata, O. hirtus and U. anastrephae). The generalist D. longicaudata varies in egg load and maturation rate depending on host quality and adult diet, respectively. Evidence of the combined effect of both factors on parasitoid fertility is presented for the specialist O. hirtus. The theoretical and practical implications of these findings are discussed.  相似文献   

7.
Field surveys were conducted during 2005 to 2007 to assess the species diversity of stem borer parasitoids in cultivated and natural habitats in four agroecological zones in Kenya. In total, 33 parasitoid species were recovered, of which 18 parasitized six stem borer species feeding on cereal crops, while 27 parasitized 21 stem borer species feeding on 19 wild host plant species. The most common parasitoids in cultivated habitats were Cotesia flavipes Cameron, Cotesia sesamiae (Cameron), Pediobius furvus Gahan and the tachinid Siphona sp., whereas in natural habitats, Siphona sp. was the most common. The majority of parasitoids were stenophagous species; only five species –Cotesia sp., Enicospilus ruscus Gauld and Mitchell, Pristomerus nr. bullis, Sturmiopsis parasitica (Curran) and Syzeuctus ruberrimus Benoit – were monophagous. In both cultivated and natural habitats, parasitoid species diversity was highest on the most dominant stem borers Busseola spp. and Chilo spp. On cereal crops, parasitoid diversity was highest on maize and among wild host plants, it was highest on Setaria spp. The ingress‐and‐sting attack method was the most common strategy used by parasitoids in both habitats. In all agroecological zones, parasitoid species diversity was significantly higher in natural than in cultivated habitats. Furthermore, the majority of parasitoid species were common to both cultivated and natural habitats. It was concluded that natural habitats surrounding cereal crops serve as refugia for sustaining the diversity of stem borer parasitoids from adjacent cereal fields.  相似文献   

8.
Metaphycus angustifrons Compere has recently been found to be the most abundant parasitoid of brown soft scale, Coccus hesperidum L., in southern California. In laboratory experiments we examined several biological parameters of this species. M. angustifrons both oviposits and host feeds in brown soft scale and is a facultatively gregarious endoparasitoid of this soft scale insect. In contrast with other Metaphycus spp., M. angustifrons is a koinobiont parasitoid, allowing its host to grow up to 40% beyond its size at parasitism. Despite its high abundance on brown soft scale in the field, in the laboratory, high rates of parasitoid egg encapsulation are observed; about half of parasitized hosts failed to issue parasitoids. Furthermore, host scales that encapsulated parasitoids eggs showed significant reduction in development. Increased scale size at oviposition influences the size of emerging females but not the size of males. Female M. angustifrons are synovigenic. They emerge from their hosts without mature eggs and begin maturing eggs after they are provided a carbohydrate source. Carbohydrates prolong the life span of both female and male M. angustifrons. The size of female wasps influences egg load but not longevity. Finally, based on laboratory observations, M. angustifrons uses citricola scale almost exclusively for host feeding and not for oviposition. These results suggest that the role of this species in citricola scale’s decline in southern California in the 1950s–1960s was negligible.  相似文献   

9.
In the adult stage, many parasitoids require hosts for their offspring growth and plant-derived food for their survival and metabolic needs. In agricultural fields, nectar provisioning can enhance biological control by increasing the longevity and fecundity of many species of parasitoids. Provided in a host patch, nectar can also increase patch quality for parasitoids and affect their foraging decisions, patch time residence, patch preference or offspring allocation. The aim of this study was to investigate the impact of extrafloral nectar (EFN) provisioning close to hosts on parasitoid aggregation in patches. The aphid parasitoid Diaeretiella rapae (M’Intosh) was released inside or outside patches containing Brassica napus L. infested by Brevicoryne brassicae L. aphids and Vicia faba L. with or without EFN. When parasitoids were released outside patches, more parasitoids were observed in patches with EFN than in patches deprived of EFN. This higher recruitment could be linked to a higher attraction of a combination of host and food stimuli or a learning process. A release–recapture experiment of labeled parasitoids released within patches showed the higher retention of parasitoids in patches providing EFN and hosts, suggesting that food close to the host patch affects patch residence time. Both attractiveness and patch retention could be involved in the higher number of parasitoids foraging in host patches surrounded by nectar and for the higher parasitism recorded. Nectar provisioning in host patches also affected female offspring allocation inside the patch.  相似文献   

10.
Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies.Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the “Enemy Hypothesis,” which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts'' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.  相似文献   

11.
In solitary parasitoids, superparasitism (the allocation ofan egg to an already parasitized host) has a payoff, measuredin offspring produced and costs, measured in eggs and time invested.Solitary parasitoids that are capable of host discriminationmust adopt the strategy that ensures the best use of both theiregg load and available lifetime. In this paper, we develop astate-dependent model defining the optimal strategy of superparasitismfor a solitary parasitoid species with overlapping generations.The fitness measure we use is based on the growth rate of thenumber of genotype copies. The model predicts that the tendencyto superparasitize should increase as the egg load of the parasitoidincreases, or as its life expectancy decreases. The model alsopredicts that under particular conditions wasps should showpartial preferences for parasitized hosts. These predictionswere tested with the parasitoid Venturia canescens (Hymenoptera:Ichneumonidae). The tendency of the wasps to superparasitizein the presence of both healthy and parasitized hosts was correlatedto egg load and access to food before the experiment A complementaryexperiment, where parasitized hosts were given sequentiallyto parasitoids, showed that V. canescens exhibits partial preferencestoward superparasitism. These experimental results and a previouswork support the predictions of the model.  相似文献   

12.
1. In primary parasitoids, significant differences in life history and reproductive traits are observed among parasitoids attacking different stages of the same host species. Much less is known about hyperparasitoids, which attack different stages of primary parasitoids. 2. Parasitoids exploit hosts in two different ways. Koinobionts attack hosts that continue feeding and growing during parasitism, whereas idiobionts paralyse hosts before oviposition or attack non‐growing host stages, e.g. eggs or pupae. 3. Koino‐/idiobiosis in primary parasitoids are often associated with different expression of life history trade‐offs, e.g. endo‐ versus ectoparasitism, high versus low fecundity and short versus long life span. 4. In the present study, life history parameters of two koinobiont endoparasitic species (Alloxysta victrix; Syrphophagus aphidivorus), and two idiobiont ectoparasitic species (Asaphes suspensus; Dendrocerus carpenteri) of aphid hyperparasitoids were compared. These hyperparasitoids attack either the parasitoid larva in the aphid before it is killed and mummified by the primary parasitoid or the parasitoid prepupa or pupa in the dead aphid mummy. 5. There was considerable variation in reproductive success and longevity in the four species. The idiobiont A. suspensus produced the most progeny by far and had the longest lifespan. In contrast, the koinobiont A. victrix had the lowest fecundity. Other developments and life history parameters in the different species were variable. 6. The present results reveal that there was significant overlap in life history and reproductive traits among hyperparasitoid koinobionts and idiobionts, even when attacking the same host species, suggesting that selection for expression of these traits is largely association specific.  相似文献   

13.
In many insect host–parasitoid systems, both the host and its parasitoids forage on shared floral resources. As a result of insect behaviour, morphology and physiology, flower species may act selectively at different levels of such systems, e.g., between the trophic levels of hosts and parasitoids, between species within a guild, between sexes or individuals within a species or between life history traits within an individual. We asked if effects of selectivity are consistent across levels in the horse chestnut leafminer, Cameraria ohridella, and its parasitoid complex. Insects were exposed singly in no-choice feeding trials to twelve common flower species and their survival and reproduction were recorded. Only one of twelve flower species (Ranunculus acris) tended to selectively favour the longevity of leafminers, but not of parasitoids. No flower species were found to favour parasitoids only. Both trophic levels profited from feeding on Anthriscus sylvestris, however, parasitoids benefited up to eight times more than their hosts. No differences were found among the species of the parasitoid guild, but females lived significantly longer than males, and single individuals within species were able to exploit generally unfavourable flower species. Out of the seven flower species that increased the longevity of leafminer females, only Chaerophyllum hirsutum significantly enhanced the number of eggs laid. Fecundity was generally positively correlated with longevity of leafminer females, but two flower species (C. hirsutum, Taraxacum officinale) had an additional positive effect on fecundity. In conclusion, we demonstrated that flowers act differently on life history traits in a host–parasitoid system at a multitude of biological levels and that these effects are not always consistent across levels. Selective plant-derived resources can therefore modify herbivore–natural enemy interactions in ways that are more complex than currently appreciated.  相似文献   

14.
Parasitism of the tobacco hornworm, Manducasexta, by the braconid wasp Cotesiacongregata, induces developmental arrest of the host in the larval stage. During the final instar of the host, its juvenile hormone (JH) titer is elevated, preventing host metamorphosis. This study investigated the effects of hormonal manipulation of the host on the parasitoid’s emergence behavior. The second larval ecdysis of the wasps coincides with their emergence from the host, and application of the juvenile hormone analogue methoprene to day 4 fifth instar hosts either delayed or totally suppressed the subsequent emergence of the wasps. Effects of methoprene were dose-dependent and no parasitoids emerged following treatment of host larvae with doses >50 μg. Parasitoids which failed to emerge eventually succumbed as unecydsed pharate third instar larvae in the hemocoel of the host. Effects of host methoprene treatment on parasitoid metamorphosis were also assessed, and metamorphic disruption occurred at much lower dosages compared with doses necessary to suppress parasitoid emergence behavior. The inhibitory effect of methoprene on parasitoid emergence behavior appears to be mediated by effects of this hormone on the synthesis or release of ecdysis-triggering hormone (ETH) in the parasitoid, the proximate endocrine cue which triggers ecdysis behavior in free-living insects. ETH accumulated in the epitracheal Inka cells of parasitoids developing in methoprene-treated hosts, suggestive of a lack of hormone release. Thus, the hormonal modulation of parasitoid emergence behavior appears to be complex, involving a suite of hormones including JH, ecdysteroid, and peptide hormones.  相似文献   

15.
1. The bottom‐up factors that determine parasitoid host use are an important area of research in insect ecology. Host size is likely to be a primary cue for foraging parasitoids due to its potential influence on offspring development time, the risk of multiparasitism, and host immunocompetence. Host size is mediated in part by host‐plant traits that influence herbivore growth and potentially affect a herbivore's quality as a host for parasitoids. 2. Here, we tested how caterpillar host size and host plant species influence adult fly parasitoid size and whether host size influences wasp parasitoid sex allocation. We measured the hind tibia lengths and determined the sex of wasp and fly parasitoids reared from 11 common host species of polyphagous caterpillars (Limacodidae) that were in turn reared on foliage of seven different host plant species. 3. We also tested how host caterpillar species, host caterpillar size, and host and parasitoid phenology affect how the parasitoid community partitions host resources. We found evidence that parasitoids primarily partition their shared hosts based on size, but not by host species or phenology. One index of specialisation (d′) supports our observation that these parasitoids are quite generalised within the Limacodidae. In general, wasps were reared from caterpillars collected in early instars, while flies were reared from caterpillars collected in late instars. Furthermore, for at least one species of solitary wasp, host size influenced sex allocation of offspring by ovipositing females. 4. Host‐plant quality indirectly affected the size attained by a tachinid fly parasitoid through its direct effects on the size and performance of the caterpillar host. The host plants that resulted in the highest caterpillar host performance in the absence of enemies also yielded the largest parasitoid flies, which suggests that host plant quality can cascade up to influence the third trophic level.  相似文献   

16.
Honeydew is a sugar-rich resource excreted by many hemipteran species and is a key food source for other insect species such as ants and parasitoid wasps. Here, we evaluated the nutritional value of 14 honeydews excreted by 13 aphid species for the generalist aphid parasitoid Lysiphlebus testaceipes to test a series of hypotheses concerning variation in the nutritional value of honeydew. There was a positive correlation between the body sugar content of honeydew-fed parasitoids and their longevity. This information is valuable for biological control researchers because it demonstrates that the nutritional state of honeydew-fed parasitoids in the wild can indicate their fitness, independently of the honeydew source they have fed on.Although the carbohydrate content and longevity of L. testaceipes differed greatly among the different honeydews, we did not find a significant effect of aphid or host plant phylogeny on these traits. This result suggests that honeydew is evolutionarily labile and may be particularly subject to ecological selection pressures. This becomes apparent when considering host aphid suitability: Schizaphis graminum, one of the most suitable and commonly used hosts of L. testaceipes, produced honeydew of the poorest quality for the parasitoid whereas Uroleucon sonchi, one of the few aphids tested that cannot be parasitized by L. testaceipes, excreted the honeydew with the highest nutritional value. These data are consistent with the hypothesis that hemipterans are subject to selection pressure to minimize honeydew quality for the parasitoids that attack them.  相似文献   

17.
A central goal in ecology is to predict what governs a species’ ability to establish in a new environment. One mechanism driving establishment success is individual species’ traits, but the role of trait combinations among interacting species across different trophic levels is less clear. Deliberate or accidental species additions to existing communities provide opportunities to study larger scale patterns of establishment success. Biological control introductions are especially valuable because they contain data on both the successfully established and unestablished species. Here, we used a recent dataset of importation biological control introductions to explore how life‐history traits of 132 parasitoid species and their herbivorous hosts interact to affect parasitoid establishment. We find that of five parasitoid and herbivore traits investigated, one parasitoid trait—host range—weakly predicts parasitoid establishment; parasitoids with higher levels of phylogenetic specialization have higher establishment success, though the effect is marginal. In addition, parasitoids are more likely to establish when their herbivore host has had a shorter residence time. Interestingly, we do not corroborate earlier findings that gregarious parasitoids and endoparasitoids are more likely to establish. Most importantly, we find that life‐history traits of the parasitoid species and their hosts can interact to influence establishment. Specifically, parasitoids with broader host ranges are more likely to establish when the herbivore they have been released to control is also more of a generalist. These results provide insight into how multiple species’ traits and their interactions, both within and across trophic levels, can influence establishment of species of higher trophic levels.  相似文献   

18.
Trade-offs amongst life history traits is a major theme in evolutionary biology. Parasitoid wasps are important biological control agents and make excellent organisms to examine trade-offs in fitness related traits such as size, development rate and survival. Here, we examined trait-related trade-offs in 2 solitary endoparasitoids developing in different stages (or instars) of the same caterpillar host, the cabbage moth Mamestra brassicae. Microplitis mediator is a small specialist parasitoid that attacks first (L1) to third (L3) instars of M. brassicae; Meteorus pulchricornis is a larger highly generalized parasitoid that attacks L1–L4 instars of the same host species. When developing in early host instars (e.g. L1–L2), both parasitoids differently traded-off size against development time. In M. mediator, adult body mass was smaller in wasps developing in L1 than in L2 and L3 hosts, whereas development time was unaffected by instar. By contrast, adult body mass in M. pulchricornis was smaller and development time longer when developing in L1 and L2 than in L3 and L4 instars. Periodic starvation of M. brassicae caterpillars parasitized by M. pulchricornis further reduced adult mass and extended development time of wasps in L2 (but not L4) hosts. Maximum egg load in M. pulchricornis (but not M. mediator) was correlated with adult female body size. Our results imply that rapid development time is more important than body size for fitness in both species, although in M. pulchricornis both development time and adult size are traded off in determining the optimal phenotype. Developing a better understanding of association-specific patterns of development in parasitoids can assist in the optimization of mass rearing of these insects for biological control.  相似文献   

19.
Resource acquisition and allocation to different biological functions over the course of life have strong implications for animal reproductive success. Animals can experience different environmental conditions during their lifetime, and this may play an important role in shaping their life-history and resource allocation strategies. In this study we investigate larval and adult resource allocation to reproductive and survival functions in the parasitoid wasp Ibalia leucospoides (family Ibaliidae). The pattern of larval resource allocation was inferred from the relationship between adult body size and ovigeny index (OI; a relative measure of investment in early reproduction determined as the ratio between the initial egg load and the potential lifetime fecundity); and adult resource allocation was explored through the influence of adult feeding on reproduction, maintenance and metabolism, in laboratory experiments. Food acquisition by this parasitoid in the wild was also examined. The relationship between size and OI was constant, suggesting no differential resource allocation to initial egg load and potential lifetime fecundity with size. This finding is in line with that predicted by adaptive models for the proovigenic egg maturation strategy (OI = 1). Despite of this, I. leucospoides showed a high OI of 0.77, which places this species among the weakly synovigenic ones (OI < 1). Adult feeding had no effect on post-emergence egg maturation. However, wasps extended their lifespan through feeding albeit only when food was provided ad libitum. Although the information we obtained on the feeding behaviour of free-foraging wasps is limited, our results suggest that food intake in the wild, while possible, may not be frequent in this parasitoid. We discuss the results relative to the environmental factors, such as reproductive opportunities and food availability, which may have driven the evolution of larval and adult pattern of resource allocation in parasitoids.  相似文献   

20.
Resource segregation by species is a cornerstone ecological concept that may result from several processes such as interspecific competition, and can help structuring communities, in particular parasitoid communities. Phorid parasitoid flies that use ants as hosts usually employ one host per individual parasitoid, and thus the pressure for segregating the host resource should be high. At a particular community, these parasitoids might segregate resources by temporal differences in activity patterns, using different host species or nests from those available. Even if parasitoid species coexist on the same nest, they can take advantage of worker polymorphism and task division, searching for ants performing different tasks at different microsites of the same nest. Here we evaluated the segregation of parasitoid species in these hypothesized axes using leaf-cutting ant phorid parasitoids as a model system. We analyzed temporal data collected at two localities with contrasting host species richness; and compared parasitoid co-occurrence at the different niche axis. For most of the hypothesized niche axes tested we found either no departures from random expectations or significantly more niche overlap than expected by chance, ruling out the existence of biologically relevant host resource segregation in this system. However, there was evidence of segregation for some species, since one parasitoid species was only found in winter and another species showed a negative correlation of its abundance over nests with other two species. Furthermore, we found that several species were flexible in host use; Atta phorids varied in average host sizes preferred, whereas Acromyrmex phorids that were generalists were able to use different host species or microsites for host location. From an applied perspective, these results are encouraging when selecting species for the control of leaf-cutting ants because parasitoids coexistence seems to be unaffected by their overlap in niche dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号