首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to demonstrate the role of the RhoA/Rho kinase pathway in endothelin-1 (ET-1)-induced contraction of the rabbit basilar artery. Isometric tension and Western blot were used to examine ET-1-induced contraction and RhoA activation. The upstream effect on ET-1-induced RhoA activity was determined by using ET(A) and ET(B) receptor antagonists, protein kinase C (PKC), tyrosine kinase, and phosphatidylinositol-3 kinase inhibitors. The downstream effect of ET-1-induced contraction and RhoA activity was studied in the presence of the Rho kinase inhibitor Y-27632. The effect of Rho kinase inhibitor on ET-1-induced myosin light chain (MLC) phosphorylation was investigated by using urea-glycerol-PAGE immunoblotting. We found 1) ET-1 increased RhoA activity (membrane binding RhoA) in a concentration-dependent manner; 2) ET(A), but not ET(B), receptor antagonist abolished the effect of ET-1 on RhoA activation; 3) phosphodylinositol-3 kinase inhibitor, but not PKC and tyrosine kinase inhibitors, reduced ET-1-induced RhoA activation; 4) Rho kinase inhibitor Y-27632 (10 microM) inhibited ET-1-induced contraction; and 5) ET-1 increased the level of MLC phosphorylation. Rho kinase inhibitor Y-27632 reduced the effect of ET-1 on MLC phosphorylation. This study demonstrated that RhoA/Rho kinase activation is involved in ET-1-induced contraction in the rabbit basilar artery. Phosphodylinositol-3 kinase and MLC might be the upstream and downstream factors of RhoA activation.  相似文献   

2.
The potent smooth muscle agonist endothelin-1 (ET-1) is involved in the local control of seminiferous tubule contractility, which results in the forward propulsion of tubular fluid and spermatozoa, through its action on peritubular myoid cells. ET-1, known to be produced in the seminiferous epithelium by Sertoli cells, is derived from the inactive intermediate big endothelin-1 (big ET-1) through a specific cleavage operated by the endothelin-converting enzyme (ECE), a membrane-bound metalloprotease with ectoenzymatic activity. The data presented suggest that the timing of seminiferous tubule contractility is controlled locally by the cyclic interplay between different cell types. We have studied the expression of ECE by Sertoli cells and used myoid cell cultures and seminiferous tubule explants to monitor the biological activity of the enzymatic reaction product. Northern blot analysis showed that ECE-1 (and not ECE-2) is specifically expressed in Sertoli cells; competitive enzyme immunoassay of ET production showed that Sertoli cell monolayers are capable of cleaving big ET-1, an activity inhibited by the ECE inhibitor phosphoramidon. Microfluorimetric analysis of intracellular calcium mobilization in single cells showed that myoid cells do not respond to big endothelin, nor to Sertoli cell plain medium, but to the medium conditioned by Sertoli cells in the presence of big ET-1, resulting in cell contraction and desensitization to further ET-1 stimulation; in situ hybridization analysis shows regional differences in ECE expression, suggesting that pulsatile production of endothelin by Sertoli cells (at specific "stages" of the seminiferous epithelium) may regulate the cyclicity of tubular contraction; when viewed in a scanning electron microscope, segments of seminiferous tubules containing the specific stages characterized by high expression of ECE were observed to contract in response to big ET-1, whereas stages with low ECE expression remained virtually unaffected. These data indicate that endothelin-mediated spatiotemporal control of rhythmic tubular contractility might be operated by Sertoli cells through the cyclic expression of ECE-1, which is, in turn, dependent upon the timing of spermatogenesis.  相似文献   

3.
Bradykinin (BK), a powerful vasodilating peptide, has been known to be one of the factors regulating vascular contractility mainly through its action on the endothelium. The effects of BK on vascular contraction induced by endothelin-1 (ET-1), a potent vasoconstrictor peptide produced in endothelium, were investigated in vitro using the canine coronary ringed artery. ET-1 at concentrations of 10(-10) to 10(-7) M induced strong and persistent contraction dose-dependently. The ET-1-induced contraction was inhibited by BK at concentrations of 10(-7) and 10(-6) M only in the presence of endothelium. A B1-receptor agonist (des-Arg9-BK) and a B1-receptor antagonist (des-Arg9-[Leu8]-BK) did not affect these effects of BK, whereas a B2-receptor antagonist ([D-Arg0,Hyp3,Thi5,8,D-Phe7]-BK) inhibited the effect of BK on the ET-1-induced contraction. These results indicate that BK may be a potent counter-factor for the ET-1-induced coronary vasoconstriction through its B2-receptors on the endothelium.  相似文献   

4.
5.
The presence of functional endothelin converting enzyme (ECE) activity in basilar artery ring segments was investigated by measuring the contractile and relaxant effects of big endothelin (ET)-1. Under resting tension conditions cumulative application of big ET1-1 elicited a concentration-related contraction with the concentration-effect curve (CEC) shifted to the right against ET-1 by a factor of 31 and 29 in segments with the endothelium intact or mechanically removed, respectively. Preincubation with the ET(A) receptor antagonist, BQ123, induced an apparently parallel rightwards shift without affecting the maximum contraction. This shift was more pronounced for ET-1 than for big ET-1. With the putative ECE inhibitor phosphoramidon (10(-3) M) in the bath a small rightwards shift of the CEC for big ET-1 was observed in control segments and a more marked one in de-endothelialized segments. In segments precontracted with prostaglandin (PG) F(2alpha) big ET-1 induced a significant although transient relaxation whereas ET-1 did not. However, in the presence of BQ123 both ET-1 and big ET-1 elicited concentration-related relaxation with a significantly higher maximum effect obtained with big ET-1. The potency was 13 fold higher for ET-1, which is markedly less than that found for contraction. The results, therefore, suggest 1) the presence of functional ECE-activity in the rat basilar artery wall, and 2) differences in the functional ECE activity located in the endothelium and media.  相似文献   

6.
The effect of endothelin-1 (ET-1) on the basilar arteries from control and subarachnoid hemorrhage (SAH) dogs were examined. The maximal contraction of the basilar artery in response to ET-1 was markedly decreased in the SAH group. Treatment with 10(-8)M phorbol 12-myristate 13-acetate (PMA) reduced the contractile responses to ET-1 in the basilar arteries from control dogs. ET-1-induced contractions of the basilar arteries from control dogs were similar to those in strips from SAH dogs by the treatment with 10(-8) M PMA. Ca(2+)-induced contraction of the basilar arteries which were depolarized with isotonic K+ (64 mM) were significantly attenuated in SAH dogs. Treatment with PMA also reduced the contractile responses to Ca2+ in the basilar arteries from control dogs. These results indicate that decreased contractile responses of the basilar arteries to ET-1 and Ca2+ in the SAH group may be related to changes in the activity of the protein kinase C in vascular smooth muscle.  相似文献   

7.
Kuwasako K  Cao YN  Nagoshi Y  Kitamura K  Eto T 《Peptides》2004,25(11):2003-2012
Three receptor activity modifying proteins (RAMPs) chaperone calcitonin-like receptor (CLR) to the cell surface. RAMP2 enables CLR to form an adrenomedullin (AM)-specific receptor that is sensitive to AM-(22-52) (AM(1) receptor). RAMP3 enables CLR to form an AM receptor sensitive to both calcitonin gene-related peptide (CGRP)-(8-37) and AM-(22-52) (AM(2) receptor), though rat and mouse AM(2) receptors show a clear preference for CGRP alpha-(8-37) over AM-(22-52). RAMP1 enables CRL to form the CGRP-(8-37)-sensitive CGRP(1) receptor, which can also be activated by higher concentrations of AM. Here we review the available information on the pharmacological features and possible pathophysiological roles of the aforementioned AM receptors.  相似文献   

8.
The role of protein kinase C (PKC) in contraction of the human myometrium induced by endothelin-1 (ET-1) was investigated at the end of pregnancy. The expression and subcellular distribution of PKC isoforms were examined by Western blot analysis using isoform-specific antibodies. At least three conventional PKC isoforms (cPKC; alpha, beta1, and beta2), two novel PKC isoforms (epsilon and delta), and an atypical PKC isoform (zeta) were detected in pregnant myometrium. Quantitative immunoblotting revealed that all these isoforms were mainly distributed in the particulate fraction. The lack of a calcium chelator to modify the particulate sequestration of cPKC suggests an interaction with an anchoring protein such as receptor-activated C kinase-1, which is evidenced in the particulate fraction of the pregnant myometrium. Of the six isoforms, only PKCbeta1, PKCbeta2, PKCdelta, and PKCzeta were translocated to the particulate fraction, and PKCepsilon to the cytoskeletal fraction, after stimulation with ET-1. Involvement of PKC in the ET-1-induced contractile response is supported by the inhibition caused by the PKC inhibitor calphostin C. However, we demonstrated that the selective cPKC isoform inhibitor, G? 6976, as well as the substantial depletion of PKCbeta1 and PKCepsilon and the partial depletion of PKCalpha and PKCdelta by a long-term treatment with phorbol 12,13-dibutyrate did not prevent ET-1-induced contraction. Accordingly, our results suggest that PKCdelta and PKCzeta activation mediated ET-1-induced contraction, whereas cPKC isoforms were not implicated in the human pregnant myometrium.  相似文献   

9.
Both endothelin (ET) and adrenomedullin (AM), produced by cardiac myocytes, are thought to be locally-acting hormones in the heart. Recently, calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) have been shown to function together to serve as AM receptors stimulating cAMP production. In the present study, we examined the effects of ET on AM secretion, intracellular cAMP response to AM, and gene expressions of CRLR and RAMPs in cultured cardiac myocytes. Synthetic ET-1 dose-dependently increased AM secretion from the cardiomyocytes. AM increased the intracellular cAMP level in a dose-dependent manner and the cAMP accumulation by AM was significantly amplified by 24 h preincubation with ET-1. 10 nmol/L ET-1 significantly increased the CRLR mRNA level without any effect on RAMP1 mRNA. 1 micromol/L ET-1 significantly reduced the RAMP2 mRNA level, but ET-1 dose-dependently increased the RAMP3 mRNA level in the cardiac myocytes. These findings suggest that ET-1 not only stimulates AM secretion, but also modulates intracellular cAMP responses to AM probably by altering the expressions of CRLR and RAMPs in rat cardiomyocytes.  相似文献   

10.
We examined the effects of a novel ETA-selective endothelin (ET) antagonist, BQ-153, on vascular responses to ET-1 and ET-3 in isolated porcine coronary and pulmonary blood vessels, to clarify the roles of ET receptor subtypes in the regulation of vascular smooth muscle tension. With endothelium-denuded vascular tissues, the concentration-contraction curve (CCC) for ET-1 appeared as a single sigmoidal shape for all types of tissue. The CCC for ET-1 was antagonized by BQ-153 (2 and 10 microM) in all tissues, but part of the contraction was resistant. The CCC for ET-3 usually consisted of two different phases with higher (first phase) and lower (second phase) sensitivities to the peptide. Only the second phase of CCC for ET-3 was completely inhibited by BQ-153 (2 microM) in all tissues, while the first phase was resistant. The BQ-153-resistant contractile phases of ET-1 and ET-3-induced vasoconstriction appeared to have similar sensitivity in all tissues, and the contractile activity varied with each type of tissue. With endothelium-intact materials, the potencies of ET-1 and ET-3 for endothelium-dependent vasorelaxation in pulmonary artery were almost equivalent. BQ-153 (10 microM) did not inhibit ET-induced vasorelaxation. These results indicate that ET-induced vasoconstriction is mediated not only through ETA but also through ETnonA (probably ETB), and that the relative proportions of the ET-receptor subtypes mediating contractions vary in different vascular areas. In addition, results showed that ET-induced endothelium-dependent vasorelaxation is mediated through ETB.  相似文献   

11.
The aim was to find out the effects of endothelin-1 (ET-1) in salmon (Salmo salar) cardiac contractile and endocrine function and its possible interaction with beta-adrenergic regulation. We found that ET-1 has a positive inotropic effect in salmon heart. ET-1 (30 nM) increased the contraction amplitude 17+/-4.7% compared with the basal level. beta-Adrenergic activation (isoprenaline, 100 nM) increased contraction amplitude 30+/-13.1%, but it did not affect the contractile response to ET-1. ET-1 (10 nM) stimulated the secretion of salmon cardiac natriuretic peptide (sCP) from isolated salmon ventricle (3.3+/-0.14-fold compared with control) but did not have any effect on ventricular sCP mRNA. Isoprenaline alone (0.1-1,000 nM) did not stimulate sCP release, but ET-1 (10 nM) together with isoprenaline (0.1 nM) caused a significantly greater increase of sCP release than ET-1 alone (5.4+/-0.07 vs. 3.3+/-0.14 times increase compared with control). The effects on the contractile and secretory function could be inhibited by a selective ETA-receptor antagonist BQ-610 (1 microM), whereas ETB-receptor blockage (by 100 nM BQ-788) enhanced the secretory response. Thus ET-1 is a phylogenetically conserved regulator of cardiac function, which has synergistic action with beta-adrenergic stimulation. The modulatory effects of ET-1 may therefore be especially important in situations with high beta-adrenergic tone.  相似文献   

12.
Endothelin-1 (ET-1) elicits a vasoconstrictor response via ET(A) receptors, whereas simultaneous activation of ET(B) receptors triggers the release of nitric oxide (NO), which may limit the constrictor effect of ET-1. Recently, stimulation of ET(B) receptors has been shown to increase the secretion of adrenomedullin (AM), a newly identified vasorelaxing peptide. The present study was designed to see whether AM can oppose the vasoconstrictor response to ET-1. In the isolated perfused paced rat heart preparation, infusion of ET-1 at concentrations of 1 nmol/l for 30 min induced a significant coronary vasoconstriction, whereas it had no effect on perfusion pressure at a dose of 0.08 nmol/l. N(omega)-nitro-L-arginine methyl ester (L-NAME; 300 micromol/l), a potent inhibitor of NO synthase (NOS), did not change the perfusion pressure when added alone to the perfusion fluid but it unmasked the constrictor effect of ET-1 at both concentrations. In the presence of L-NAME, AM (0.03 to 1 nmol/l) markedly reversed the pressor response to ET-1 at both concentrations. Administration of AM (0.03 and 1 nmol/l) alone resulted in a dose-dependent decrease in perfusion pressure, which was not modified in the presence of L-NAME. In conclusion, the coronary vasoconstrictor response to ET-1 is markedly augmented in the presence of a NOS inhibitor. This constrictor response is substantially reversed by AM. Our results indicate that AM may serve as a paracrine modulator of ET-1-induced vasoconstriction independently of the NO pathway.  相似文献   

13.
Mice have been increasingly used as models for investigating cardiovascular diseases. However, the responsiveness of mouse vasculature to endothelin (ET)-1 has not been clearly established. The goal of this study was to determine the role of ET receptors (ET(A) and ET(B)) in mouse vessels using isometric force measurements. Results showed that in the abdominal aorta ET-1 induced a concentration-dependent contraction (EC(50): 1.4 nM) with maximum reaching 89.5 +/- 4.9% (10 nM) of that induced by 60 mM K(+) [with nitric oxide synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME)]. However, in the thoracic aorta or the carotid artery, ET-1 was poorly effective. RT-PCR revealed that in the endothelium-denuded abdominal aorta, the PCR product for ET(B) receptors was very low compared with ET(A). Similarly in tissues treated with l-NAME, the ET(B) receptor-specific agonist sarafotoxin 6c (S6c; 100 nM) induced only a minimal contraction (<5%). Meanwhile, the ET(A) antagonist BQ-123 (1 microM) completely inhibited the maximum ET-1 (10 nM) contractile response. Furthermore, we found that in the abdominal aorta that had not been treated with l-NAME, ET-1-induced contraction significantly decreased. However, in such specimens, S6c was unable to induce any relaxation on phenylephrine-induced contraction. These results indicate that the role of ET receptors differs considerably among mouse vessels. In the abdominal aorta, ET(A) receptor mediates a potent vasoconstrictor response, whereas ET(B) has, if any, only a minimal functional presence. Also, our data suggest that ET-1 might involve a NOS-dependent vasodilation in the abdominal aorta, which remains to be further defined.  相似文献   

14.
We have previously shown that protein kinase C (PKC) and/or PKC are necessary for endothelin-1 (ET-1)-induced human myometrial contraction at the end of pregnancy (Eude I, Paris P, Cabrol D, Ferré F, and Breuiller-Fouché M. Biol Reprod 63: 1567–1573, 2000). Here, we report that the selective inhibitor of PKC isoform, Rottlerin, does not prevent ET-1-induced contractions, whereas LY-294002, a phosphatidylinositol (PI) 3-kinase inhibitor, affects the contractile response. This study characterized the in vitro contractile response of cultured human pregnant myometrial cells to ET-1 known to induce in vitro contractions of intact uterine smooth muscle strips. Cultured myometrial cells incorporated into collagen lattices have the capacity to reduce the size of these lattices, referred to as lattice contraction. Neither the selective conventional PKC isoform inhibitor, Gö-6976, or rottlerin affected myometrial cell-mediated gel contraction by ET-1, whereas this effect was blocked by LY-294002. We found that treatment of myometrial cell lattices with an inhibitory peptide specific for PKC or with an antisense against PKC resulted in a significant loss of ET-1-induced contraction. Evidence is also presented by using confocal microscopy that ET-1 induced translocation of PKC to a structure coincident with the actin-rich microfilaments of the cytoskeleton. We have shown that PKC has a role in the actin organization in ET-1-stimulated cells. Accordingly, our results suggest that PKC plays a role in myometrial contraction in pregnant women. protein kinase C; uterine smooth muscle; parturition  相似文献   

15.
Endothelin-1 (ET-1) is a potent vasoconstrictive peptide produced and secreted mainly by endothelial cells. Recent studies indicate that ET-1 can regulate lipid metabolism, which may increase the risk of insulin resistance. Our previous studies revealed that ET-1 induced lipolysis in adipocytes, but the underlying mechanisms were unclear. 3T3-L1 adipocytes were used to investigate the effect of ET-1 on lipolysis and the underlying mechanisms. Glycerol levels in the incubation medium and hormone-sensitive lipase (HSL) phosphorylation were used as indices for lipolysis. ET-1 significantly increased HSL phosphorylation and lipolysis, which were completely inhibited by ERK inhibitor (PD98059) and guanylyl cyclase (GC) inhibitor (LY83583). LY83583 reduced ET-1-induced ERK phosphorylation. A Ca2+-free medium and PLC inhibitor caused significant decreases in ET-1-induced lipolysis as well as ERK and HSL phosphorylation, and IP3 receptor activator (D-IP3) increased lipolysis. ET-1 increased cGMP production, which was not affected by depletion of extracellular Ca2+. On the other hand, LY83583 diminished the ET-1-induced Ca2+ influx. Transient receptor potential vanilloid-1 (TRPV-1) antagonist and shRNA partially inhibited ET-1-induced lipolysis. ET-1-induced lipolysis was completely suppressed by CaMKIII inhibitor (NH-125). These results indicate that ET-1 stimulates extracellular Ca2+ entry and activates the intracellular PLC/IP3/Ca2+ pathway through a cGMP-dependent pathway. The increased cytosolic Ca2+ that results from ET-1 treatment stimulates ERK and HSL phosphorylation, which subsequently induces lipolysis. ET-1 induces HSL phosphorylation and lipolysis via the GC/cGMP/Ca2+/ERK/CaMKIII signaling pathway in 3T3-L1 adipocytes.  相似文献   

16.
The contractile effects of a peptide isolated from rat erythrocytes were further studied in rat aortic rings. Previous data showed that preincubation of aortic tissue with the peptide had no effect on resting tension, but significantly enhanced K+ and norepinephrine (NE) induced contraction. The calcium channel antagonist verapamil noncompetitively blocked the effect of the peptide, whereas nifedipine blockage appeared to be competitive. In the present study the peptide enhanced K+, NE, and phenylephrine (PE) induced contraction in a concentration-dependent manner, with a maximum enhancement at peptide concentrations of 10(-7)-10(-6) M. At a concentration as low as 10(-9) M, the peptide significantly enhanced K(+)-induced, but not NE- or PE-induced, contraction. The magnitude of maximal enhancement was greater for K(+)-induced contraction than that for NE- or PE-induced contraction. Preincubation of the tissues with the peptide caused a leftward shift of cumulative concentration-response curves to K+ and NE. The peptide enhancement of contraction increased with increasing K+ and NE concentration. The peptide potentiated the contractile response to Ca2+ in K(+)-depolarizing medium. It also enhanced the contractile response to NE in intracellular Ca2(+)-pool-depleted tissue following the replenishment of extracellular Ca2+, but had no apparent effect on the mobilization of intracellular calcium. Addition of nifedipine caused a rightward shift of both the peptide and Bay K 8644 concentration-response curves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Beta-adrenergic receptor (beta-AR) antagonists have been associated with increased airway reactivity in asthmatics and potentiation of contractile stimuli in animal models. In the present study, using an in vitro model of tracheal preparations from guinea pigs, we show that the beta-AR antagonists propranolol and pindolol induce a smooth muscle contraction. A prerequisite for this contraction is that the airway preparations have been pre-treated with an beta-AR agonist. Our data show that the contractile effect of beta-AR antagonists is not a simple consequence of reversing the agonist-induced relaxation. Furthermore, the effect seems to be mediated through interaction with beta2-ARs since the response is stereo-selective, and the selective beta1-AR receptor antagonist atenolol did not induce any contractile response. SQ 29,546, a thromboxane A2 antagonist; MK 886, a lipoxygenase inhibitor; and indomethacin, a cyclooxygenase inhibitor significantly inhibited the contractions of the tracheal preparations induced with propranolol or pindolol. We put forward the hypothesis that the contractile effect of the beta-AR antagonist is a consequence of their inverse agonist activity, which is only evident when the receptor population have a higher basal activity. Our results indicate a novel additional explanation for the known side effect, bronchoconstriction, of beta-AR antagonist.  相似文献   

18.
Sphingosine 1-phosphate (S1P), a bioactive sphingolipid involved in diverse biological processes, is generated by sphingosine kinase (SphK) and acts via intracellular and/or extracellular mechanisms. We used biochemical, pharmacological, and physiological approaches to investigate in rat myometrium the contractile effect of exogenous S1P and the possible contribution of SphK in endothelin-1 (ET-1)-mediated contraction. S1P stimulated uterine contractility (EC50 = 1 µM and maximal response = 5 µM) by a pertussis toxin-insensitive and a phospholipse C (PLC)-independent pathway. Phosphorylated FTY720, which interacts with all S1P receptors, except S1P2 receptors, failed to mimic S1P contractile response, indicating that the effects of S1P involved S1P2 receptors that are expressed in myometrium. Contraction mediated by S1P and ET-1 required extracellular calcium and Rho kinase activation. Inhibition of SphK reduced ET-1-mediated contraction. ET-1, via ETA receptors coupled to pertussis toxin-insensitive G proteins, stimulated SphK1 activity and induced its translocation to the membranes. Myometrial contraction triggered by ET-1 is consecutive to the sequential activation of PLC, protein kinase C, SphK1 and Rho kinase. Prolonged exposure of the myometrium to S1P downregulated S1P2 receptors and abolished the contraction induced by exogenous S1P. However, in these conditions, the tension triggered by ET-1 was not reduced, indicating that SphK activated by ET-1 contributed to its contractile effect via a S1P2 receptor-independent process. Our findings demonstrated that exogenous S1P and SphK activity regulated myometrial contraction and may be of physiological relevance in the regulation of uterine motility during gestation and parturition. uterus; contraction  相似文献   

19.
The vasodilating peptide adrenomedullin (AM) has been reported to regulate vascular tone as well as proliferation and differentiation of various cell types in an autocrine/paracrine manner. Our study was designed to investigate the effect of AM on Ang II-induced contraction on human aortic smooth muscle cells (HASMC) in vitro, evaluating the signal pathways involved. Our findings indicate that AM was able to inhibit HASMC Ang II-induced contraction (IC50 19 nM). AM stimulated cAMP production in a dose-dependent fashion as well. SQ 22.536, an adenylate cyclase inhibitor, and KT5720, a PKA inhibitor, blunted the AM effect, suggesting that it was mediated by the activation of the cAMP transduction pathway. Our results suggest that AM plays a role in the regulation of HASMC contraction by antagonizing the Ang II effects and may be involved in conditions of altered regulation of the blood vessels.  相似文献   

20.
Huang SC 《Regulatory peptides》2003,113(1-3):131-138
Endothelin (ET) causes contraction of the gallbladder. To investigate effects of ET in the common bile duct, we measured contraction of longitudinal muscle strips from guinea pig common bile ducts induced by ET-related peptides and binding of 125I-ET-1 to cell membranes prepared from the common bile duct. Visualization of 125I-ET-1 binding sites in tissue was performed by autoradiography. ET-1 caused tetrodotoxin and atropine-insensitive contraction. In terms of maximal tension of contraction, ET-1, ET-2 and ET-3 were equal in efficacy. However, sarafotoxin S6c, a selective ET(B) receptor agonist, caused only a negligible contraction. The relative potencies for ET isopeptides to cause contraction were ET-1=ET-2>ET-3. The ET-1-induced contraction was inhibited by BQ-123, an ET(A)-receptor-selective antagonist, but not by BQ-788, an ET(B)-receptor-selective antagonist. In addition, the combination of both antagonists, BQ-123 and BQ-788, inhibited ET-1 induced contraction but did not potentiate the inhibition caused by BQ-123 alone. These indicate that ET(A) but not ET(B) receptors mediate the contraction. Autoradiography localized 125I-ET-1 binding to the smooth muscle layer. Binding of 125I-ET-1 to the smooth muscle cell membranes was saturable and specific. Analysis of dose-inhibition curves indicated the presence of ET(A) and ET(B) receptors. These results demonstrate that ET causes contraction of longitudinal muscle of the common bile duct. Different from the gallbladder, which possesses both ET(A) and ET(B) receptors cooperating to mediate muscle contraction, the common bile duct possesses two classes of ET receptors, but only the ET(A) receptor mediates the contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号