首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
A mutant LEU4 gene (LEU4fbr-2), responsible for both the overproduction of iso-amyl alcohol in yeast and the phenotype of yeast resistant to 5,5,5-trifluoro-dl-leucine (TFL), was isolated from a TFL-resistant mutant of Saccharomyces cerevisiae F-7. The single copy number of LEU4fbr-2 complemented the leucine auxotrophy of S. cerevisiae HB190 (a, leu4, leu5), and also transformed it to TFL-resistant. Leucine-insensitive α-isopropylmalate synthase activity was detected in the crude extract of the Leu+ transformant. Also sake yeast Kyokai no. 7 (K-7) was transformed by the LEU4fbr-2 gene to TFL-resistant. The resulting transformants produced 3∼30-fold higher levels of iso-amyl alcohol (approx. 50∼475 ppm) in shaking cultures, while in static cultures the increase in productivity was only 2.5-fold compared with that of recipient strain K-7. The isolated LEU4fbr-2 gene may be useful as a positive selectable marker for the transformation of industrial yeast.  相似文献   

5.
Genetic engineering is widely used to meliorate biological characteristics of industrial brewing yeast. But how to solve multiple problems at one time has become the bottle neck in the genetic modifications of industrial yeast strains. In a newly constructed strain TYRL21, dextranase gene was expressed in addition of α-amylase to make up α-amylase’s shortcoming which can only hydrolyze α-1,4-glycosidic bond. Meanwhile, 18s rDNA repeated sequence was used as the homologous sequence for an effective and stable expression of LSD1 gene. As a result, TYRL21 consumed about twice much starch than the host strain. Moreover TYRL21 speeded up the fermentation which achieved the maximum cell number only within 3 days during EBC tube fermentation. Besides, flavor evaluation comparing TYRL21 and wild type brewing strain Y31 also confirmed TYRL21’s better performances regarding its better saccharides utilization (83% less in residual saccharides), less off-flavor compounds (57% less in diacetyl, 39% less in acetaldehyde, 67% less in pentanedione), and improved stability index (increased by 49%) which correlated with sensory evaluation of final beer product.  相似文献   

6.
Summary Among the DNA repair mutants of the yeastSaccharomyces cerevisiae, the rad6 mutants are characterized by a highly pleiotropic phenotype. Most remarkably, these mutants are sensitive towards a variety of DNA-damaging agents and deficient in mutation induction. The RAD6 gene has been cloned and most recently, ubiquitin-conjugating activity of the Rad6 protein has been demonstrated. In this brief review, the properties of rad6 mutants are discussed in the light of these new findings. The available data hint at a connection between DNA repair, mutagenesis, chromosome structure and protein degradation.  相似文献   

7.
In the meiotic prophase nucleus of the fission yeast Schizosaccharomyces pombe, chromosomes are arranged in an oriented manner: telomeres cluster in close proximity to the spindle pole body (SPB), while centromeres form another cluster at some distance from the SPB. We have isolated a mutant, kms1, in which the structure of the meiotic prophase nucleus appears to be distorted. Using specific probes to localize the SPB and telomeres, multiple signals were observed in the mutant nuclei, in contrast to the case in wild-type. Genetic analysis showed that in the mutant, meiotic recombination frequency was reduced to about one-quarter of the wild-type level and meiotic segregation was impaired. This phenotype strongly suggests that the telomere-led rearrangement of chromosomal distribution that normally occurs in the fission yeast meiotic nucleus is an important prerequisite for the efficient pairing of homologous chromosomes. The kms1 mutant was also impaired in karyogamy, suggesting that the kms1 + gene is involved in SPB function. However, the kms1 + gene is dispensable for mitotic growth. The predicted amino acid sequence of the gene product shows no significant similarity to known proteins.  相似文献   

8.
Johnson V  Ayaz P  Huddleston P  Rice LM 《Biochemistry》2011,50(40):8636-8644
Microtubule dynamics play essential roles in intracellular organization and cell division. They result from structural and biochemical properties of αβ-tubulin heterodimers and how these polymerizing subunits interact with themselves and with regulatory proteins. A broad understanding of the underlying mechanisms has been established, but fundamental questions remain unresolved. The lack of routine access to recombinant αβ-tubulin represents an obstacle to deeper insight into αβ-tubulin structure, biochemistry, and recognition. Indeed, the widespread reliance on animal brain αβ-tubulin means that very few in vitro studies have taken advantage of powerful and ordinarily routine techniques like site-directed mutagenesis. Here we report new methods for purifying wild-type or mutant yeast αβ-tubulin from inducibly overexpressing strains of Saccharomyces cerevisiae. Inducible overexpression is an improvement over existing approaches that rely on constitutive expression: it provides higher yields while also allowing otherwise lethal mutants to be purified. We also designed and purified polymerization-blocked αβ-tubulin mutants. These "blocked" forms of αβ-tubulin give a dominant lethal phenotype when expressed in cells; they cannot form microtubules in vitro and when present in mixtures inhibit the polymerization of wild-type αβ-tubulin. The effects of blocking mutations are very specific, because purified mutants exhibit normal hydrodynamic properties, bind GTP, and interact with a tubulin-binding domain. The ability to overexpress and purify wild-type αβ-tubulin, or mutants like the ones we report here, creates new opportunities for structural studies of αβ-tubulin and its complexes with regulatory proteins, and for biochemical and functional studies of microtubule dynamics and its regulation.  相似文献   

9.
Summary Our previous work showed that NADP+-dependent glutamate dehydrogenase from K. marxianus behaves similarly to its counterpart in S. cerevisiae. It suggested that the ammonia assimilation pathway might be different between K. marxianus and the genetic closed species K. lactis. In the present work, we analyzed the genetic similarity among the GDH gene family in K. marxianus and closed yeasts. Specific primers for GDH genes were designed based on the K. marxianus sequences deposited in the Génolevures Database. One of them, for the KmGDH2 gene, proved to be specific for K. marxianus DNA samples, which confirmed the molecular identification of environmental yeast isolates, and can be proposed for rapid screening of this yeast from environmental samples. The nucleotide sequence revealed that KmGDH2 belongs to the S. cerevisiae GDH1 gene family together with KlGDH gene.  相似文献   

10.
The brewer’s yeast genome encodes a ‘Flo’ flocculin family responsible for flocculation. Controlled floc formation or flocculation at the end of fermentation is of great importance in the brewing industry since it is a cost-effective and environmental-friendly technique to separate yeast cells from the final beer. FLO genes have the notable capacity to evolve and diverge many times faster than other genes. In actual practice, this genetic variability may directly alter the flocculin structure, which in turn may affect the flocculation onset and/or strength in an uncontrolled manner. Here, 16 ale and lager yeast strains from different breweries, one laboratory Saccharomyces cerevisiae and one reference Saccharomyces pastorianus strain, with divergent flocculation strengths, were selected and screened for characteristic FLO gene sequences. Most of the strains could be distinguished by a typical pattern of these FLO gene markers. The FLO1 and FLO10 markers were only present in five out of the 18 yeast strains, while the FLO9 marker was ubiquitous in all the tested strains. Surprisingly, three strongly flocculating ale yeast strains in this screening also share a typical ‘lager’ yeast FLO gene marker. Further analysis revealed that a complete Lg-FLO1 allele was present in these ale yeasts. Taken together, this explicit genetic variation between flocculation genes hampers attempts to understand and control the flocculation behavior in industrial brewer’s yeasts.  相似文献   

11.
Spent brewer's yeast was autolysed and used as a raw material for the preparation of 5-GMP-rich yeast extracts. Malt rootlets were used as a source of 5-phosphodiesterase. The crude enzyme was extracted from malt rootlets and pretreated to inactivate 5-nucleotidase. The optimum pretreatment conditions were heating at 65 °C for 30 min or 70 °C for 7 min. The effects of autolysis time, phosphodiesterase concentration and incubation period on 5-GMP content were examined. The suitable autolysis time was 8 h. The preferable enzyme treatment period was in the range of 8–14 h. Longer autolysis and enzyme incubation periods caused a decrease in the 5-GMP content from 0.7–0.9% (w/w) to 0.2–0.4% (w/w). The 5-GMP content in extracts from debittered and non-debittered yeast was similar. The highest 5-GMP content in yeast extract was 0.93% (w/w), obtained with a phosphodiesterase concentration of 1.6unit/ml of yeast extract (5% solids content).  相似文献   

12.
13.
《Gene》1996,169(2):223-227
A 4333-bp novel human cDNA sequence designated HEP-COP was isolated from the Hep3B hepatocellular carcinoma cell line by the RACE technique. Within HEP-COP was identified an ORF of 3672 bp encoding a deduced 1224-amino-acid (aa) sequence which exhibited striking homology with the 1201-aa sequence of RET1P, the α-subunit of the coatomer complex (α-COP) in Saccharomyces cerevisiae which participates in membrane transport between the endoplasmic reticulum and Golgi apparatus. The aa homology was highest in their N-terminal regions which each contained six WD-40 repeat motifs [Van der Voorn and Ploegh, FEBS Lett. 307 (1992) 131–134], and both proteins were predicted to be hydrophilic with similar estimated molecular masses of 138 324 and 135599 Da, respectively. Northern blot hybridization demonstrated that HEP-COP was expressed in a wide range of human adult and fetal tissues. RT-PCR analysis revealed no differential expression of HEP-COP in 14 human cancer cell lines, as compared with normal control cells. Considering the close similarities between HEP-COP and yeast α-COP, and the ubiquitous expression of HEP-COP implying an essential cellular role, it is likely that HEP-COP is the human homologue of α-COP  相似文献   

14.
15.
16.
Cystathionine β-synthase (CBS) catalyzes the pyridoxal 5′-phosphate (PLP)-dependent condensation of l-serine and l-homocysteine to form l-cystathionine in the first step of the reverse transsulfuration pathway. Residue S289 of yeast CBS, predicted to form a hydrogen bond with the pyridine nitrogen of the PLP cofactor, was mutated to alanine and aspartate. The kcat/Kml-Ser of the S289A mutant is reduced by a factor of ~ 800 and the β-replacement activity of the S289D mutant is undetectable. Fluorescence energy transfer between tryptophan residue(s) of the enzyme and the PLP cofactor, observed in the wild-type enzyme and diminished in the S289A mutant, is absent in S289D. These results demonstrate that residue S289 is essential in maintaining the properties and orientation of the pyridine ring of the PLP cofactor. The reduction in activity of ytCBS-S289A suggests that ytCBS catalyzes the α,β-elimination of l-Ser via an E1cB mechanism.  相似文献   

17.
To achieve higher level expression of Interferon α2b (IFN-α2b) in methylotrophic yeast (Pichia pastoris), a cDNA fragment coding for the mature IFN-α2b was designed and synthesized based on the synonymous codon bias of P. pastoris and optimized G+C content. The synthetic IFN-α2b was inserted into the secreted expression vector pPICZαA, and then integrated into P. pastoris GS115 genome by electroporation. Multi-copy integrants in the Mut+ recombinant P. pastoris strain were screened by high concentrations of Zeocin. 120 hours culturing allowed expression of the IFN-α2b transformant up to 810 mg/L as detected by SDS-PAGE and quantitative methods. In addition, Western blot analysis showed that the recombinant proteins had immunogenicity. The significant antiviral activity of the recombinant IFN-α2b protein was verified by WISH/ VSV system, which was 3.3×105 IU/mL. Foundation items: The National ‘973’ Basic Research Program (2002CB111302); The National Natural Science Foundation of China (30370807)  相似文献   

18.
19.
20.
An efficient and environmentally benign simple fusion reaction of 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine (1a) or 3-chloro-6-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)pyridazine (2a) with different aliphatic/aromatic amines have produced a series of novel pyrazolylpyridazine amines (4a–4c & 5a–5m). All compounds exhibited moderate in vitro yeast α-glucosidase inhibition except m-chloro derivative 5g, which was found potent inhibitor of this enzyme with IC50 value of 19.27 ± 0.005 µM. The molecular docking further helped in understanding the structure activity relationship of these compounds including 5g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号