首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The photosynthetic origin of apicomplexan parasites was proposed upon the discovery of a reduced non-photosynthetic plastid termed the apicoplast in their cells. Although it is clear that the apicoplast has evolved through a secondary endosymbiosis, its particular origin within the red or green plastid lineage remains controversial. The recent discovery of Chromera velia, the closest known photosynthetic relative to apicomplexan parasites, sheds new light on the evolutionary history of alveolate plastids. Here we review our knowledge on the evolutionary history of Apicomplexa and particularly their plastids, with a focus on the pathway by which they evolved from free-living heterotrophs through photoautotrophs to omnipresent obligatory intracellular parasites. New sequences from C. velia (histones H2A, H2B; GAPDH, TufA) and phylogenetic analyses are also presented and discussed here.  相似文献   

9.
10.
11.
12.
13.
The endosymbiotic origin of chloroplasts from cyanobacteria has long been suspected and has been confirmed in recent years by many lines of evidence. Debate now is centered on whether plastids are derived from a single endosymbiotic event or from multiple events involving several photosynthetic prokaryotes and/or eukaryotes. Phylogenetic analysis was undertaken using the inferred amino acid sequences from the genes psbA, rbcL, rbcS, tufA and atpB and a published analysis (Douglas and Turner, 1991) of nucleotide sequences of small subunit (SSU) rRNA to examine the relationships among purple bacteria, cyanobacteria and the plastids of non-green algae (including rhodophytes, chromophytes, a cryptophyte and a glaucophyte), green algae, euglenoids and land plants. Relationships within and among groups are generally consistent among all the trees; for example, prochlorophytes cluster with cyanobacteria (and not with green plastids) in each of the trees and rhodophytes are ancestral to or the sister group of the chromophyte algae. One notable exception is that Euglenophytes are associated with the green plastid lineage in psbA, rbcL, rbcS and tufA trees and with the non-green plastid lineage in SSU rRNA trees. Analysis of psbA, tufA, atpB and SSU rRNA sequences suggests that only a single bacterial endosympbiotic event occurred leading to plastids in the various algal and plant lineages. In contrast, analysis of rbcL and rbcS sequences strongly suggests that plastids are polyphyletic in origin, with plastids being derived independently from both purple bacteria and cyanobacteria. A hypothesis consistent with these discordant trees is that a single bacterial endosymbiotic event occurred leading to all plastids, followed by the lateral transfer of the rbcLS operon from a purple bacterium to a rhodophyte.  相似文献   

14.
15.
16.
We have worked out a system to obtain mutations that map in the promoter region of the Escherichia coli galactose operon. In order to easily detect small changes in gal promoter activity, we constructed a plasmid containing an operon fusion in which the lactose operon structural genes were controlled by the galactose operon promoter region. In cells harbouring this plasmid, even modest variations in the expression of the lac genes could be detected on MacConkey lactose indicator plates.Enrichment for mutations that map in the promoter segment of the galactose operon was achieved by mutagenesis in vitro of a small fragment of DNA covering the promoter region. After insertion of the mutagenized gal promoter fragment into the gal-lac fusion plasmid, lac?1 cells were transformed and screened for an altered Lac+ phenotype on indicator plates. Several mutants were isolated due to lesions mapping in the small fragment covering the galactose promoter. In these mutants, the level of β-galactosidase was between 15 and 50% of the wild-type level.The mutant promoters were subsequently reinserted into a plasmid containing the intact galactose operon. Cells harbouring such plasmids, reconstituted with mutant galactose promoters, contained decreased levels of galactokinase that paralleled the decreases in β-galactosidase. The biochemical properties of these mutants are reported in the accompanying paper (Busby et al., 1982).  相似文献   

17.
18.
19.
20.
Promoter engineering in plants holds a great promise for understanding complexity of genetic regulatory system in response to specific internal and external cues and for crop improvement. In the present investigation, we report characterization of two fruit-specific promoters SIACS4 and SIEXP1 that were isolated from tomato (Solanum lycopersicum L cv Pusa Ruby). In silico analysis of the cloned promoter sequences revealed the presence of a seed-specific cis-element in SIACS4 and several putative seed, embryo and endosperm-specific cis-elements in SIEXP1 in addition to fruit-specific ethylene responsive regulatory elements. The fruit- and seed-specific expression of both the promoters was analyzed in transgenic tomato lines expressing the promoter:: GUS fusion constructs. The SIACS4 promoter (?1 to ?373) showed GUS activity restricted specifically to flower buds and seeds in fruits. On the contrary, the SIEXP1 promoter (?1 to ?769) showed high level of expression in seeds as compared to fruit tissues at different stages of fruit ripening. No GUS expression was observed in leaves satisfying the fruit-specific nature of both the promoters. Based on deletion analysis, minimal promoters SIACS4DL2 (?1 to ?126) and SIEXP1DL1 (?1 to ?254) were identified which can be used to drive tissue-specific expression of transgenes for introducing traits of agronomic importance such as resistance to fruit borer and for enhancing both nutritional and keeping quality of tomato fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号