首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desseyn JL  Laine A 《Genomics》2003,81(4):433-436
Using degenerate primers designed from conserved cysteine-rich domains of gel-forming mucins, we cloned two new mouse mucin cDNAs. Blast searching showed that they belong to the same new gene assigned to chromosome 7 band F5. This gene is clustered with the three secreted large gel-forming mucins Muc2, Muc5ac, and Muc5b in a region that exhibits synteny with human chromosome 11p15. Computer analysis and sequence alignments with mucin genes predict that the new gene is composed of 33 exons and spans 30 kb from the initiation ATG codon to the Stop codon. Sequence similarities, domain organization of the deduced peptide, and expression analysis allow us to conclude that this newly cloned mouse gene is Muc6, i.e., the mouse ortholog of human MUC6. Like those of their human homologs, the genomic order and arrangement of the four mucins within the cluster of mucin genes are conserved.  相似文献   

2.
Using genomic cosmid and BAC clones and genome shotgun supercontigs available in GenBank, we determined the complete gene structure of the four mouse secreted gel-forming mucin genes Muc2, Muc5ac, Muc5b and Muc6 and the organization of the genomic locus harboring these genes. The mouse secreted gel-forming mucin gene is 215 kb on distal chromosome 7 to 69.0 cM from the centromere and organized as: Muc6-Muc2-Muc5ac-Muc5b with Muc2, Muc5ac and Muc5b arranged in the same orientation and Muc6 in opposite. Mouse mucin genes have highly similar genomic organization to each other and to their respective human homologues indicating that they have been well conserved through evolution. Deduced peptides showed striking sequence similarities in their N- and C-terminal regions whereas the threonine/serine/proline-rich central region is specific for each other and for species. Expression studies also showed that they have expression patterns similar to human mucin genes with Muc2 expressed in small and large intestines, Muc5ac and Muc6 in stomach, and Muc5b in laryngo-tracheal tract. These data constitute an important initial step for investigation of mucin gene regulation and mucin function through the use of animal models.  相似文献   

3.
4.
5.
We have isolated and characterized several MUC7 genomic clones encoding the human low-molecular-weight salivary mucin, MG2. The MUC7 gene spans ∼10.0 kb and comprises of three exons and two introns. Intron 1 is ∼1.7 kb long and is located in the 5′-untranslated region of the corresponding MUC7 cDNA. Intron 2 spans ∼6.0 kb and is located close to the boundary of the putative leader peptide and secreted protein. The entire region encoding the secreted peptide is located on exon 3, spanning ∼2.2 kb. The nucleotide sequence of sections of the MUC7 gene, including 1500 bp of the 5′-flanking region, was determined and analyzed for motifs identical or homologous to other known response elements. A modified RACE procedure was used to determine the 5′-end of the MUC7 mRNA. PCR, the human–hamster somatic cell hybrid panel PCRable DNAs kit, and anin situhybridization analysis on the complete metaphase chromosome spreads were used for the chromosomal localization of the MUC7 gene. It was mapped to chromosome 4q13–q21.  相似文献   

6.
7.
The gene encoding the mouse analogue of the human complement regulator CD59 was cloned using a combination of long range PCR and genomic library screening. Sequence obtained showed that its genomic structure closely resembled that of the human CD59 gene, comprising 4 exons, each separated by a long intron region. The sizes of introns and exons were comparable to those of the human gene with the exception of the third intron which is 2.5 kb in the mouse compared to 7 kb in the human gene. All exon/intron boundaries conformed to the GT-AG rules for splicing. Radiation hybrid mapping localised mouse Cd59 between D2Mit333 and D2Mit127 on chromosome 2, a region homologous with human chromosome 11p13 where the human CD59 gene is localised. These data have permitted the construction of a gene targeting vector for the generation of transgenic mice deficient in CD59.  相似文献   

8.
9.
10.
Genomic structure and chromosomal mapping of the murine CD40 gene.   总被引:3,自引:0,他引:3  
The B cell-associated surface molecule, CD40, is likely to play a central role in the expansion of Ag-stimulated B cells, and their interaction with activated Th cells. In our study we have isolated genomic clones of murine CD40 from a mouse liver genomic DNA library. Comparison with the murine CD40 cDNA sequence revealed the presence of nine exons that together contain the entire murine CD40 coding region, and span approximately 16.3 kb of genomic DNA. The intron/exon structure of the CD40 gene resembles that of the low affinity nerve growth factor receptor gene, a close homolog of both human and murine CD40. In both cases the functional domains of the receptor molecules are separated onto different exons throughout the genes. Southern blot analysis demonstrated that murine CD40 is a single copy gene that maps in the distal region of mouse chromosome 2.  相似文献   

11.
MUC5B is the predominant polymeric mucin in human saliva [Thornton, Khan, Mehrotra, Howard, Veerman, Packer and Sheehan (1999) Glycobiology 9, 293-302], where it contributes to oral cavity hydration and protection. More recently, the gene for another putative polymeric mucin, MUC19, has been shown to be expressed in human salivary glands [Chen, Zhao, Kalaslavadi, Hamati, Nehrke, Le, Ann and Wu (2004) Am. J. Respir. Cell Mol. Biol. 30, 155-165]. However, to date, the MUC19 mucin has not been isolated from human saliva. Our aim was therefore to purify and characterize the MUC19 glycoprotein from human saliva. Saliva was solubilized in 4 M guanidinium chloride and the high-density mucins were purified by density-gradient centrifugation. The presence of MUC19 was investigated using tandem MS of tryptic peptides derived from this mucin preparation. Using this approach, we found multiple MUC5B-derived tryptic peptides, but were unable to detect any putative MUC19 peptides. These results suggest that MUC19 is not a major component in human saliva. In contrast, using the same experimental approach, we identified Muc19 and Muc5b glycoproteins in horse saliva. Moreover, we also identified Muc19 from pig, cow and rat saliva; the saliva of cow and rat also contained Muc5b; however, due to the lack of pig Muc5b genomic sequence data, we were unable to identify Muc5b in pig saliva. Our results suggest that unlike human saliva, which contains MUC5B, cow, horse and rat saliva are a heterogeneous mixture of Muc5b and Muc19. The functional consequence of these species differences remains to be elucidated.  相似文献   

12.
13.
Mouse genomic DNA harboring the full coding sequence of cyclin G1 was cloned and analyzed. The locations of five coding exons and the intron–exon boundary sequences were found to be conserved between the mouse and the human genes. Two putative binding sites for thep53tumor suppressor gene product were found around the first exon: one was located in the 5′ regulatory region, and the other was in the first intron. The mouse cyclin G1 gene was mapped to bands A5 to B1 of chromosomes 11 (11A5–B1) by FISH using genomic DNA clone as a biotinylated probe. The location of mouse cyclin G1 is syntenic to that of its human homologue, which we previously mapped to 5q32–q34 of chromosome 5. An additional faint signal was detected on chromosome 4 (4B1–C2), probably indicating the presence of a cyclin G1-related gene or pseudogene in the mouse genome.  相似文献   

14.
Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR)   总被引:31,自引:0,他引:31  
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. A human cDNA for MTHFR, 2.2 kb in length, has been expressed and shown to result in a catalytically active enzyme of approximately 70 kDa. Fifteen mutations have been identified in the MTHFR gene: 14 rare mutations associated with severe enzymatic deficiency and 1 common variant associated with a milder deficiency. The common polymorphism has been implicated in three multifactorial diseases: occlusive vascular disease, neural tube defects, and colon cancer. The human gene has been mapped to chromosomal region 1p36.3 while the mouse gene has been localized to distal Chromosome (Chr) 4. Here we report the isolation and characterization of the human and mouse genes for MTHFR. A human genomic clone (17 kb) was found to contain the entire cDNA sequence of 2.2 kb; there were 11 exons ranging in size from 102 bp to 432 bp. Intron sizes ranged from 250 bp to 1.5 kb with one exception of 4.2 kb. The mouse genomic clones (19 kb) start 7 kb 5′ exon 1 and extend to the end of the coding sequence. The mouse amino acid sequence is approximately 90% identical to the corresponding human sequence. The exon sizes, locations of intronic boundaries, and intron sizes are also quite similar between the two species. The availability of human genomic clones has been useful in designing primers for exon amplification and mutation detection. The mouse genomic clones will be helpful in designing constructs for gene targeting and generation of mouse models for MTHFR deficiency. Received: 28 January 1998 / Accepted: 9 April 1998  相似文献   

15.
16.
The MUC3 gene encodes a large, glycosylated mucin produced by intestinal epithelial cells to form a protective barrier against the external environment. Recently published cDNA sequences for the carboxyl-terminal region of MUC3 polypeptide indicated that rodent Muc3 possesses two epidermal growth factor (EGF)-like domains, and putative transmembrane and cytoplasmic domains, whereas the sequence of human MUC3 predicted termination after the first EGF-like domain. Here we describe the complete genomic sequence encompassing the carboxyl terminal region of human MUC3, revealing the boundaries of 11 exons. RT-PCR and cDNA library cloning experiments indicate that the gene is alternatively spliced, yielding a major membrane-bound form as well as multiple soluble forms. Thus, this work indicates that both membrane-bound and soluble MUC3 mucin proteins are produced by alternative splicing of a single gene. A potentially important polymorphism involving a Tyr residue with a proposed role in signalling is described as well.  相似文献   

17.
18.
Forsell PA  Boie Y  Montalibet J  Collins S  Kennedy BP 《Gene》2000,260(1-2):145-153
PTP-1B is a ubiquitously expressed intracellular protein tyrosine phosphatase (PTP) that has been implicated in the negative regulation of insulin signaling. Mice deficient in PTP-1B were found to have an enhanced insulin sensitivity and a resistance to diet-induced obesity. Interestingly, the human PTP-1B gene maps to chromosome 20 q13.1 in a region that has been associated with diabetes and obesity. Although there has been a partial characterization of the 3′ end of the human PTP-1B gene, the complete gene organization has not been described. In order to further characterize the PTP-1B gene, we have cloned and determined the genomic organization for both the human and mouse PTP-1B genes including the promoter. The human gene spans >74 kb and features a large first intron of >54 kb; the mouse gene likewise contains a large first intron, although the exact size has not been determined. The organization of the human and mouse PTP-1B genes is identical except for an additional exon at the 3′ end of the human that is absent in the mouse. The mouse PTP-1B gene maps to the distal arm of mouse chromosome 2 in the region H2-H3. This region is associated with a mouse obesity quantitiative trait locus (QTL) and is syntenic with human chromosome 20. The promoter region of both the human and mouse genes contain no TATA box but multiple GC-rich sequences that contain a number of consensus SP-1 binding sites. The basal activity of the human PTP-1B promoter was characterized in Hep G2 cells using up to 8 kb of 5′ flanking sequence. A 432 bp promoter construct immediately upstream of the ATG was able to confer maximal promoter activity. Within this sequence, there are at least three GC-rich sequences and one CCAAT box, and deletion of any of these elements results in decreased promoter activity. In addition, the promoter in a number of mouse strains contains, 3.5 kb upstream of the start codon, an insertion of an intracisternal a particle (IAP) element that possibly could alter the expression of PTP-1B mRNA in these strains.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号