共查询到20条相似文献,搜索用时 0 毫秒
1.
Chronic neurodegenerative diseases of the CNS (central nervous system) are characterized by the loss of neurons. There is, however, growing evidence to show that an early stage of this process involves degeneration of presynaptic terminals prior to the loss of the cell body. Synaptic plasticity in CNS pathology has been associated with microglia and the phenomenon of synaptic stripping. We review here the evidence for the involvement of microglia in synaptic stripping and synapse degeneration and we conclude that this is a case of guilt by association. In disease models of chronic neurodegeneration, there is no evidence that microglia play an active role in either synaptic stripping or synapse degeneration, but the degeneration of the synapse and the envelopment of a degenerating terminal appears to be a neuron autonomous event. We highlight here some of the gaps in our understanding of synapse degeneration in chronic neurodegenerative disease. 相似文献
2.
3.
4.
5.
Massimo A. Hilliard 《Journal of neurochemistry》2009,108(1):23-32
Axonal degeneration is a common hallmark of both nerve injury and many neurodegenerative conditions, including motor neuron disease, glaucoma, and Parkinson's, Alzheimer's, and Huntington's diseases. Degeneration of the axonal compartment is distinct from neuronal cell death, and often precedes or is associated with the appearance of the symptoms of the disease. A complementary process is the regeneration of the axon, which is commonly observed following nerve injury in many invertebrate neurons and in a number of vertebrate neurons of the PNS. Important discoveries, together with innovative imaging techniques, are now paving the way towards a better understanding of the dynamics and molecular mechanisms underlying these two processes. In this study, I will discuss these recent findings, focusing on the balance between axonal degeneration and regeneration. 相似文献
6.
Summary In order to examine the possible haematogenous origin of phagocytes in anterograde and retrograde degeneration, rabbit peritoneal macrophages were labeled in vitro with 3H-DFP and injected intravenously into host animals. Four or five days prior to the injection, the facial nerve was avulsed and the sciatic nerve ligated in five recipients. The animals were killed 24 h after the injection of the macrophages. Labeled cells were found in that part of the sciatic nerve which was mechanically damaged and in the liver and spleen but not in areas with retrograde or Wallerian degeneration. The possible interpretation of these findings is discussed.The present experiments were performed by M.O. after suggestions by A.T. These studies were supported by a grant from the Deutsche Forschungsgemeinschaft 相似文献
7.
《Cell cycle (Georgetown, Tex.)》2013,12(24):3840-3846
The contribution of error-prone DNA polymerases to the DNA damage response has been a subject of great interest in the last decade. Error-prone polymerases are required for translesion DNA synthesis (TLS), a process that involves synthesis past a DNA lesion. Under certain circumstances, TLS polymerases can achieve bypass with good efficiency and fidelity. However, they can also in some cases be mutagenic, and so negative regulators of TLS polymerases would have the important function of inhibiting their recruitment to undamaged DNA templates. Recently work from Livneh’s and our groups have provided evidence regarding the role of the cyclin kinase inhibitor p21 as a negative regulator of TLS. Interestingly, both the cyclin dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) binding domains of p21 are involved in different aspects of the modulation of TLS, affecting both the interaction between PCNA and the TLS-specific pol η as well as PCNA ubiquitination status. In line with this, p21 was shown to reduce the efficiency but increase the accuracy of TLS. Hence, in absence of DNA damage p21 may work to impede accidental loading of pol η to undamaged DNA and avoid consequential mutagenesis. After UV irradiation, when TLS plays a decisive role, p21 is progressively degraded. This might allow gradual release of replication fork blockage by TLS polymerases. For these reasons, in higher eukaryotes p21 might represent a key regulator of the equilibrium between mutagenesis and cell survival. 相似文献
8.
Dendrites and axons are delicate neuronal membrane extensions that undergo degeneration after physical injuries. In neurodegenerative diseases, they often degenerate prior to neuronal death. Understanding the mechanisms of neurite degeneration has been an intense focus of neurobiology research in the last two decades. As a result, many discoveries have been made in the molecular pathways that lead to neurite degeneration and the cell-cell interactions responsible for the subsequent clearance of neuronal debris. Drosophila melanogaster has served as a prime in vivo model system for identifying and characterizing the key molecular players in neurite degeneration, thanks to its genetic tractability and easy access to its nervous system. The knowledge learned in the fly provided targets and fuel for studies in other model systems that have further enhanced our understanding of neurodegeneration. In this review, we will introduce the experimental systems developed in Drosophila to investigate injuryinduced neurite degeneration, and then discuss the biological pathways that drive degeneration. We will also cover what is known about the mechanisms of how phagocytes recognize and clear degenerating neurites, and how recent findings in this area enhance our understanding of neurodegenerative disease pathology. 相似文献
9.
The right dorsal lateral geniculate nucleus was stereotaxically destroyed in adult albino rats. After 3 to 150 days of survival the visual cortices from both hemispheres were processed for semithin histology, electron microscopy, GFAP immunohistochemistry and immunoblotting. In visual cortices with histologically disclosed degeneration of the geniculo-cortical tract, a hypertrophy of astrocytes without change in their total numbers was seen from postoperative day 3. From day 7, a rise in GFAP immunoreactivity was observed, reaching its peak between days 11–14, after which a decrease occurred. Observations were confirmed by computer-assisted image analysis of immunohistochemical preparation. Using the immunoblot technique, relative GFAP levels were found to change in a fashion similar to immunohistochemical findings. This showed that synaptic degeneration triggered an up-regulation of GFAP synthesis in the perisynaptic astrocyte processes as a second, cytoskeletal phase of the astrocyte reaction. The phenomenon is denoted as the remote astroglial response (RAR) and is though to be a marker of synapase removal during plastic changes either related to function or induced by lesions. An extrapolation is made to the possible significance of whole-brain GFAP levels in assessing the effects of focal CNS lesions.Abbreviations CGL
corpus geniculatum laterale
- CNS
central nervous system
- DAB
diaminobenzidine
- DLGN
dorsal lateral geniculate nucleus
- GFAP
glial fibrillary acidic protein
- RAR
remote astroglial response 相似文献
10.
Florian Bassermann Ruth Eichner Michele Pagano 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
Two families of E3 ubiquitin ligases are prominent in cell cycle regulation and mediate the timely and precise ubiquitin–proteasome-dependent degradation of key cell cycle proteins: the SCF (Skp1/Cul1/F-box protein) complex and the APC/C (anaphase promoting complex or cyclosome). While certain SCF ligases drive cell cycle progression throughout the cell cycle, APC/C (in complex with either of two substrate recruiting proteins: Cdc20 and Cdh1) orchestrates exit from mitosis (APC/CCdc20) and establishes a stable G1 phase (APC/CCdh1). Upon DNA damage or perturbation of the normal cell cycle, both ligases are involved in checkpoint activation. Mechanistic insight into these processes has significantly improved over the last ten years, largely due to a better understanding of APC/C and the functional characterization of multiple F-box proteins, the variable substrate recruiting components of SCF ligases. Here, we review the role of SCF- and APC/C-mediated ubiquitylation in the normal and perturbed cell cycle and discuss potential clinical implications of SCF and APC/C functions. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf. 相似文献
11.
The Rho/ROCK/LIMK pathway is central for the mediation of repulsive environmental signals in the central nervous system. Several studies using pharmacological Rho-associated protein kinase (ROCK) inhibitors have shown positive effects on neurite regeneration and suggest additional pro-survival effects in neurons. However, as none of these drugs is completely target specific, it remains unclear how these effects are mediated and whether ROCK is really the most relevant target of the pathway. To answer these questions, we generated adeno-associated viral vectors to specifically downregulate ROCK2 and LIM domain kinase (LIMK)-1 in rat retinal ganglion cells (RGCs) in vitro and in vivo. We show here that specific knockdown of ROCK2 and LIMK1 equally enhanced neurite outgrowth of RGCs on inhibitory substrates and both induced substantial neuronal regeneration over distances of more than 5 mm after rat optic nerve crush (ONC) in vivo. However, only knockdown of ROCK2 but not LIMK1 increased survival of RGCs after optic nerve axotomy. Moreover, knockdown of ROCK2 attenuated axonal degeneration of the proximal axon after ONC assessed by in vivo live imaging. Mechanistically, we demonstrate here that knockdown of ROCK2 resulted in decreased intraneuronal activity of calpain and caspase 3, whereas levels of pAkt and collapsin response mediator protein 2 and autophagic flux were increased. Taken together, our data characterize ROCK2 as a specific therapeutic target in neurodegenerative diseases and demonstrate new downstream effects of ROCK2 including axonal degeneration, apoptosis and autophagy. 相似文献
12.
The turnover of cellular proteins is a highly organized process that involves spatially and temporally regulated degradation by the ubiquitin/proteasome system. It is generally acknowledged that the specificity of the process is determined by constitutive or conditional protein domains, the degradation signals, that target the substrate for proteasomal degradation. In this review, we discuss a new type of regulatory domain: the stabilization signal. A model is proposed according to which protein half-lives are determined by the interplay of counteracting degradation and stabilization signals. 相似文献
13.
ANNE-SOPHIE DIELEN SALOUA BADAOUI THIERRY CANDRESSE SYLVIE GERMAN-RETANA 《Molecular Plant Pathology》2010,11(2):293-308
The ubiquitin/26S proteasome system (UPS) plays a central role in plant protein degradation. Over the past few years, the importance of this pathway in plant–pathogen interactions has been increasingly highlighted. UPS is involved in almost every step of the defence mechanisms in plants, regardless of the type of pathogen. In addition to its proteolytic activities, UPS, through its 20S RNase activity, may be part of a still unknown antiviral defence pathway. Strikingly, UPS is not only a weapon used by plants to defend themselves, but also a target for some pathogens that have evolved mechanisms to inhibit and/or use this system for their own purposes. This article attempts to summarize the current knowledge on UPS involvement in plant–microbe interactions, a complex scheme that illustrates the never-ending arms race between hosts and microbes. 相似文献
14.
15.
The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction 总被引:24,自引:0,他引:24
The ubiquitin system of intracellular protein degradation controls the abundance of many critical regulatory proteins. Specificity in the ubiquitin system is determined largely at the level of substrate recognition, a step that is mediated by E3 ubiquitin ligases. Analysis of the mechanisms of phosphorylation directed proteolysis in cell cycle regulation has uncovered a new class of E3 ubiquitin ligases called SCF complexes, which are composed of the subunits Skp1, Rbx1, Cdc53 and any one of a large number of different F-box proteins. The substrate specificity of SCF complexes is determined by the interchangeable F-box protein subunit, which recruits a specific set of substrates for ubiquitination to the core complex composed of Skp1, Rbx1, Cdc53 and the E2 enzyme Cdc34. F-box proteins have a bipartite structure--the shared F-box motif links F-box proteins to Skp1 and the core complex, whereas divergent protein-protein interaction motifs selectively bind their cognate substrates. To date all known SCF substrates are recognised in a strictly phosphorylation dependent manner, thus linking intracellular signalling networks to the ubiquitin system. The plethora of different F-box proteins in databases suggests that many pathways will be governed by SCF-dependent proteolysis. Indeed, genetic analysis has uncovered roles for F-box proteins in a variety of signalling pathways, ranging from nutrient sensing in yeast to conserved developmental pathways in plants and animals. Moreover, structural analysis has revealed ancestral relationships between SCF complexes and two other E3 ubiquitin ligases, suggesting that the combinatorial use of substrate specific adaptor proteins has evolved to allow the regulation of many cellular processes. Here, we review the known signalling pathways that are regulated by SCF complexes and highlight current issues in phosphorylation dependent protein degradation. 相似文献
16.
Emergence of the cell cycle hypothesis in neurodegenerative disease comes from the numerous lines of evidence showing a tight link between "cell cycle-like reactivation" and neuronal death. Terminally differentiated neurons remain in G0 phase and display, compared to proliferating cells, an opposite regulation pattern of cell cycle markers in that most of the key activators and inhibitors are respectively down- and up-regulated. It has been clearly established that any experimental attempt to force terminally differentiated neurons to divide ultimately leads to their death. Conversely, cell cycle blockade in experimental models of neuronal death is able to rescue neurons. Hence, cell cycle deregulation is certainly among mechanisms governing neuronal death. However, many questions remain unresolved, especially those related to which molecular mechanisms trigger cell cycle deregulation and how this deregulation leads to cell death. In the present review, we focus on neurodegeneration in Alzheimer's disease and discuss the cell cycle deregulation related to this neurodegenerative pathology. Finally, we emphasize the role of p25/Cdk5 kinase complex in this pathological process through retinoblastoma protein phosphorylation and derepression of E2F-responsive genes and other actors such as cdc2, cyclins, and MCM proteins. 相似文献
17.
18.
The effect of power frequency electric field (EF) on nerve regeneration was investigated on a rat peroneal nerve crush injury model. The animals were assigned to three groups: 50 Hz EF and Static EF groups were exposed at 10 kV/m. The sham group was kept in the same setting without any EF applications. EF was uninterruptedly applied for 21 days postoperatively. Repeated measures analysis of daily walking tracks during EF exposure demonstrated lower toe spread recovery (TSR) in the 50 Hz EF group. Significant difference across the groups was found only at days 7, 8, 12, 16, 17, 20, and 21 when TSR was analyzed for each measurement time. Print length recovery and peroneal function index did not differ across the groups. Walking track parameters were found to recover to their baseline values by day 28 in all groups. Day 14 but not day 21 measurements revealed smaller nerve cross-sectional area, lower total regenerating axon area, and higher mean myelin debris area in 50 Hz EF group. Both day 14 and 21 measurements revealed higher total myelin debris area, lower EDL muscle weight, and lack of significant enlargement in nerve cross-section distal to the injury, compared to the normal counterpart in 50 Hz EF group. All differences were in keeping with lower rates of Wallerian degeneration and nerve regeneration in 50 Hz EF group. When walking track, histomorphometry and muscle weight are considered individually, their differences across the groups may appear to be subtle to derive a conclusion for a 50 Hz EF effect. However, their concordance with each other in direction of effect suggests that continuous 50 Hz EF exposure has a weak effect that is detrimental mostly to the rate of early nerve regeneration in this axonotmetic injury model. Recovery of walking tracks was not different between Static EF and Sham groups. This suggests that the surface charges that may indirectly affect walking behaviors of the rats, do not account for the lower recovery of TSR in 50 Hz EF group. Differences in nerve regeneration between 50 Hz EF and Static EF groups suggests that electric induction may be required for pure EF effects even though the estimated density of induced fields is not above the endogenous background level for the 50 Hz EF exposure in this study. 相似文献
19.
Dopamine, a molecule of joy and emotions, plays vital role in regulation cancer growth and tumor angiogenesis. Dopamine secrets from neural cells in brain and peripheral cells as well. Peripheral dopamine is associated with tumorigenic events. Recent publication [Sarkar et al. Int. J. Cancer: doi:10.1002/ijc.29414, 2014] suggests that dopamine can be an ideal substitute as an anti-vascular endothelial growth factor A (VEGF-A) agent for the treatment tumor angiogenesis as dopamine is less expensive, minimum side-effect and more sensitive than other drugs. The studies also found that dopamine prevent the 5FU-induced neutropenia in tumor-bearing mice. Collectively, these pre-clinical studies claim that dopamine could be a novel therapy for managing cancer growth and chemotherapy related disorder. 相似文献
20.
Calò L Cinque C Patanè M Schillaci D Battaglia G Melchiorri D Nicoletti F Bruno V 《Journal of neurochemistry》2006,98(1):1-10
There is increasing evidence that Eph receptors and their transmembrane ligands, named ephrins, interact with glutamate receptors in both developing and adult neurons. EphB receptors interact with proteins that regulate the membrane trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunits, and both ephrins and EphB receptors have been found to co-localize with N-methyl-d-aspartate (NMDA) receptors and to positively modulate NMDA receptor function. Moreover, pharmacologic activation of ephrin-Bs amplifies group-I metabotropic glutamate receptor signaling through mechanisms that involve NMDA receptors. The interaction with ionotropic or metabotropic glutamate receptors provides a substrate for the emerging role of ephrins and Eph receptors in the regulation of activity-dependent forms of synaptic plasticity, such as long-term potentiation and long-term depression, which are established electrophysiologic models of associative learning. In addition, these interactions explain the involvement of ephrins/Eph receptors in the regulation of pain threshold and epileptogenesis, as well as their potential implication in processes of neuronal degeneration. This may stimulate the search for new drugs that might modulate excitatory synaptic transmission by interacting with the ephrin/Eph receptor system. 相似文献