首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Insect Biochemistry》1981,11(1):43-47
A temperature-dependent interconversion between fat body glycogen and haemolymph trehalose was demonstrated in diapausing pupae of the silkworm, Philosamia cynthia pryeri. When pupae at early-diapause stage were placed at 2°C for several weeks, the haemolymph trehalose content increased to about 35–50 mg/ml haemolymph, whereas the trehalose content of insects maintained at 20°C remained at 5–10 mg/ml. Concomitant with this change in haemolymph trehalose level, the glycogen content of the fat body dropped from 29–41 mg to 6.6–8.6 mg/g wet weight. This interconversion could be demonstrated repeatedly if the diapausing pupae were successively exposed to high and low temperatures, although the total amount of carbohydrates decreased slightly during repeated interconversions.Non-diapausing pupae of the silkworm, Philosamia cynthia ricini, did not accumulate trehalose appreciably even when exposed to 2°C for a long period.  相似文献   

2.
Trehalose is a disaccharide sugar that is now considered to be widely distributed among higher plants. Trehalose has been attributed a number of roles, including control of basic plant processes, such as photosynthesis, and conferring tolerance to abiotic stresses, such as desiccation and high salinity. Trehalose is also a common storage sugar used by insects. In this study, we used laboratory investigations to examine various aspects of trehalose dynamics in an aphid–host plant system (Arabidopsis and the peach potato aphid, Myzus persicae). Trehalose concentrations were measured by [1-H]-NMR. Myzus persicae reared on Arabidopsis, but not on black mustard or spring cabbage, contained considerable quantities of trehalose (5 % w/w dry matter). In Arabidopsis foliage, feeding by aphids induced a density-dependent accumulation of trehalose up to 5 mg g?1 dry weight. Leaves that were not challenged directly by aphids also exhibited increased trehalose concentrations, indicating that this accumulation was systemic. Trehalose was measured at high concentrations in the phloem sap of plants challenged by aphids, suggesting that aphid feeding induced the plant to produce significant quantities of trehalose, which moved through the plant and into the aphids via the phloem sap. Trehalose was also excreted in the aphid honeydew. Further work is required to clarify whether this trehalose accumulation in Arabidopsis has a direct role or a signalling function in plant tolerance of, or resistance to, aphid feeding, and if a similar accumulation of this sugar occurs when other species or genotypes of aphids are reared on this host plant.  相似文献   

3.
Trehalose is proposed to serve multiple physiological roles in insects. However, its importance remains largely unconfirmed. In the present paper, we knocked down either a trehalose biosynthesis gene (trehalose-6-phosphate synthase, LdTPS) or each of three degradation genes (soluble trehalases LdTRE1a, LdTRE1b or membrane-bound LdTRE2) in Leptinotarsa decemlineata by RNA interference (RNAi). Knockdown of LdTPS decreased trehalose content and caused larval and pupal lethality. The LdTPS RNAi survivors consumed a greater amount of foliage, obtained a heavier body mass, accumulated more glycogen, lipid and proline, and had a smaller amount of chitin compared with the controls. Ingestion of trehalose but not glucose rescued the food consumption increase and larval mass rise, increased survivorship, and recovered glycogen, lipid and chitin to the normal levels. In contrast, silencing of LdTRE1a increased trehalose content and resulted in larval and pupal lethality. The surviving LdTRE1a RNAi hypomorphs fed a smaller quantity of food, had a lighter body weight, depleted lipid and several glucogenic amino acids, and contained a smaller amount of chitin. Neither trehalose nor glucose ingestion rescued these LdTRE1a RNAi defects. Silencing of LdTRE1b caused little effects. Knockdown of LdTRE2 caused larval death, increased trehalose contents in several tissues and diminished glycogen in the brain-corpora cardiaca-corpora allata complex (BCC). Feeding glucose but not trehalose partially rescued the high mortality rate and recovered glycogen content in the BCC. It seems that trehalose is involved in feeding regulation, sugar absorption, brain energy supply and chitin biosynthesis in L. decemlineata larvae.  相似文献   

4.
Flies without Trehalose   总被引:2,自引:0,他引:2  
Living organisms adapt to environmental changes through metabolic homeostasis. Sugars are used primarily for the metabolic production of ATP energy and carbon sources. Trehalose is a nonreducing disaccharide that is present in many organisms. In insects, the principal hemolymph sugar is trehalose instead of glucose. As in mammals, hemolymph sugar levels in Drosophila are regulated by the action of endocrine hormones. Therefore, the mobilization of trehalose to glucose is thought to be critical for metabolic homeostasis. However, the physiological role of trehalose as a hemolymph sugar during insect development remains largely unclear. Here, we demonstrate that mutants of the trehalose-synthesizing enzyme Tps1 failed to produce trehalose as expected but survived into the late pupal period and died before eclosion. Larvae without trehalose grew normally, with a slight reduction in body size, under normal food conditions. However, these larvae were extremely sensitive to starvation, possibly due to a local defect in the central nervous system. Furthermore, Tps1 mutant larvae failed to grow on a low-sugar diet and exhibited severe growth defects on a low-protein diet. These diet-dependent phenotypes of Tps1 mutants demonstrate the critical role of trehalose during development in Drosophila and reveal how animals adapt to changes in nutrient availability.  相似文献   

5.
Trehalase activity was measured in tissue homogenates and extracts from the larval, pupal, and adult stages of Musca domestica, the common housefly. The tissue homogenates were separated into soluble and particlebound fractions by differential centrifugation, and the trehalase activities of the fractions were measured. The trehalase specific activity (units of enzyme/mg protein) in homogenates from adult insects was nearly twenty times greater than activity in homogenates of larvae. Homogenates of pupae showed intermediate values. In both the adults and larvae the enzyme activity was approximately evenly distributed between soluble and particle-bound forms, whereas 95 per cent of the trehalase activity in the extract of pupae was in the soluble fraction. The results show that the form and amount of trehalase present during housefly development is adjusted to accommodate the enzyme's physiological rôle of splitting trehalose to glucose for the insect's use as an energy source.  相似文献   

6.
Alterations of carbohydrate metabolism associated with parasitism were examined in an insect, Manduca sexta L. In insect larvae maintained on a low carbohydrate diet gluconeogenesis from [3-13C]alanine was established from the fractional 13C enrichment in trehalose, a disaccharide of glucose and the blood sugar of insects and other invertebrates. After transamination of the isotopically substituted substrate to [3-13C]pyruvate, the latter was carboxylated to oxaloacetate ultimately leading to de novo glucose synthesis and trehalose formation. Trehalose was selectively enriched with 13C at C1 and C6 followed by C2 and C5. 13C enrichment of blood sugar in insects parasitized by Cotesia congregata (Say) was significantly greater than was observed in normal animals. The relative contributions of pyruvate carboxylation and decarboxylation to trehalose labeling were determined from the 13C distribution in glutamine, synthesized as a byproduct of the tricarboxylic acid cycle. The relative contribution of carboxylation was significantly greater in parasitized larvae than in normal insects providing additional evidence of elevated gluconeogenesis due to parasitism. Despite the increased gluconeogenesis in parasitized insects the level of blood sugar was the same in all animals. Because de novo glucose synthesis does not normally maintain blood sugar level in insects maintained under these dietary conditions the findings suggest an aberrant regulation over gluconeogenesis. The 13C labeling in trehalose was nearly symmetric in all insects but the mean C1/C6 13C ratio was higher in parasitized animals suggesting a lower activity of the pentose phosphate pathway that brings about a redistribution of 13C in trehalose following de novo glucose synthesis. Additional studies with insects maintained on a high carbohydrate diet and administered [1,2-13C2]glucose confirmed a decreased level of pentose cycling during parasitism consistent with a lower level of lipogenesis. It is suggested, however, that the pentose pathway may facilitate the synthesis of trehalose from dietary carbohydrate by directing hexose phosphate cycled through the pathway to the production of energy.  相似文献   

7.
For insight into the physiological indicators of diapause in Pieris melete, water and carbohydrate (glycogen and trehalose) levels were measured under both natural and laboratory conditions. The highest water content (3.71–3.79 mg/mg dry weight) was found in larvae and developing pupae, which was substantially higher than in diapausing pupae (2.59 mg/mg dry weight). Water content was almost stable during diapause, except for individuals approaching diapause termination (3.43–3.58 mg/mg dry weight). The total carbohydrate level was significantly higher in pre‐pupae (47.41 μg/mg) compared to larvae (22.80 μg/mg) and developing pupae (21.48 μg/mg). The highest level of trehalose was detected in winter diapausing pupae, and no trehalose was found in larvae or developing pupae. Levels of glycogen were highest in pre‐pupae and lowest in diapausing pupae. Levels of total carbohydrate decreased as diapause proceeded, and no significant changes were found in trehalose levels for diapausing pupae under natural conditions or treated for 60–90 days at 5°C. Pupae treated at 20°C for 60–90 days had significantly lower levels of trehalose than those treated for 30 days. Glycogen content was relatively stable at 5°C, but increased after treatment under natural conditions and 20°C for more than 60 days. These results suggest that the dynamics of water and carbohydrate levels are potential physiological diapause indicators, which show metabolic differences between trehalose and glycogen during diapause development.  相似文献   

8.
Quantitative analyses have been made of the dietary cholesterol requirement for the growth of the larvae of Musca domestica. The larvae will not grow on diets to which no cholesterol is added, a few pupae and adults are obtained when the concentration of cholesterol is 0·05 μmol/g of diet, but the concentration has to be raised to 0·36 μmol/g of diet before the maximum numbers of pupae and adults are obtained. Further addition of cholesterol above 0·36 μmol/g diet did not have any significant effect on the weight and growth of the larvae. However, the ratios of the cholesterol to phospholipid fractions recovered from the larvae increased rapidly when the concentration of cholesterol in the diet was raised from 0·05 to 0·56 μmol/g of diet. Above this concentration only a slight increase in the ratios was observed. Larvae reared on diets containing 0·05 μmol cholesterol/g of diet contain only 25 per cent of the cholesterol content of the larvae reared on the diets containing more than 0·28 μmol of cholesterol/g of diet, the cholesterol content being expressed relative to the weight of the larvae,The absence of cholesterol synthesis has been demonstrated in the larvae by feeding [4-14C] cholesterol. The specific activity of the cholesterol recovered from the larvae is the same as that of cholesterol added to the diet. Irrespective of the cholesterol concentration of the larval diet, approximately 97 per cent of the radioactivity recovered from the larvae behaved as free cholesterol, less than 1 per cent as cholesterol esters and the rest as unidentified ‘polar sterols’. The results are compared with those from similar studies on other insects.  相似文献   

9.
Nutrient metabolism is crucial for the survival of insects through the diapause. However, little is known about the metabolic mechanism of prolonged diapause. The sawfly, Cephalcia chuxiongica (Hymenoptera: Pamphiliidae), is a notorious defoliator of pine trees in southwest China. One of the distinguishing biological characteristics of this pest is the prolonged diapause of about 1.5 years. In this study, the body lipid, carbohydrate (total body sugar, glycogen, trehalose, and glucose), protein, and glycerol contents were measured in diapausing larvae of C. chuxiongica. The results showed that the changes of biochemical composition in C. chuxiongica are associated with the diapause initiation, maintenance, and termination phases. During the initiation phase, trehalose, glucose, and glycerol increased significantly, but glycogen decreased sharply. In general, the lipid, carbohydrate, and glycerol levels decreased gradually across the maintenance phase. At termination phase, the contents of glycogen and lipid persistently decreased, while an increase of trehalose, glucose, and glycerol contents were detected. The protein level was significantly higher at maintenance phase than at initiation and termination phases. It was also found that elevation of trehalose, glucose, and glycerol contents occurred in winter. These implies that the metabolites with altered levels in diapausing larvae of C. chuxiongica are responsible for maintaining a prolonged development and overwintering.  相似文献   

10.
The drought-resistant cyanobacteria Phormidium autumnale, strain LPP4, and a Chroococcidiopsis sp. accumulated trehalose, sucrose, and both trehalose and sucrose, respectively, in response to matric water stress. Accumulated sugar concentrations reached values of up to 6.2 μg of trehalose per μg of chlorophyll in P. autumnale, 6.9 μg of sucrose per μg of chlorophyll in LPP4, and 4.1 μg of sucrose and 3.2 μg of trehalose per μg of chlorophyll in the Chroococcidiopsis sp. The same sugars were accumulated by these cyanobacteria in similar concentrations under osmotic water stress. Cyanobacteria that did not show drought resistance (Plectonema boryanum and Synechococcus strain PCC 7942) did not accumulate significant amounts of sugars when matric water stress was applied.  相似文献   

11.
Glycogen, trehalose, glucose, and total lipid contents of six nematode species were studied. Anhydrobiotic Anguina tritici and Ditylencbus dipsaci stored trehalose in preference to glycogen and only small amounts of glucose were detected. Glycogen content was also reduced in anhydrobiotic Aphelenchus avenae. Conversely, Panagrellus redivivus and Turbatrix aceti contained large amounts of glycogen, appreciable amounts of glucose, and minimal amounts of trehalose. Ditylenchus myceliophagous "curds" contained low amounts of glycogen and very little trehalose; total lipid was 60% of that in fresh samples. The lipid contents of fresh samples of P. redivivus, T. aceti, and A. avenae were high (23.1, 21.9, and 36.7% dry weight, respectively), but in anhydrobiotic A. avenae larvae the level was reduced by over 60%. In contrast, lipid levels remained high in anhydrobiotic A. tritici and D. dipsaci larvae (40.6 and 38.3%, respectively). Analysis of lipid composition in anhydrobiotic A. tritici and A. avenae did not indicate any specific metabolic adaptations to desiccation survival.  相似文献   

12.
13.
在以卵滞育的昆虫中昆虫滞育时的生理代谢特点已经得到了大量研究。本文对以末龄幼虫(5龄)滞育的大斑芫菁Mylabris phalerate(Pallas)在不同滞育阶段体内糖类和醇类代谢的特征进行了研究。结果表明: 滞育个体血淋巴中的海藻糖含量高于非滞育个体,且随滞育时间的加大逐渐升高,滞育5个月时达到最大值,为5.61 μmol/mL。糖原的含量随滞育的进程逐渐减少,滞育初期(0.5个月)为0.72 mg/mL,到滞育末期(5个月)时仅为0.1 mg/mL。滞育个体脂肪体中的海藻糖含量都高于非滞育个体,滞育1个月时为非滞育个体的3倍,至滞育末期时达非滞育个体的5倍,为2.5 μmol/g脂肪体。糖原含量总体变化趋势是随滞育时间的加大逐渐减少,滞育早期和中期都高于非滞育个体。在滞育过程中血淋巴积累的小分子多元醇主要为甘油,其次是山梨醇;而在脂肪体中主要为甘油,其次是甘露醇,少量积累山梨醇:表明大斑芫菁滞育幼虫主要积累的是海藻糖和一些小分子多元醇。滞育幼虫在准备滞育时储备了大量糖原,这些糖原可能为滞育期间海藻糖、山梨醇和甘油的代谢提供了原料。  相似文献   

14.
An important prelude to bacterial infection is the ability of a pathogen to survive independently of the host and to withstand environmental stress. The compatible solute trehalose has previously been connected with diverse abiotic stress tolerances, particularly osmotic shock. In this study, we combine molecular biology and biochemistry to dissect the trehalose metabolic network in the opportunistic human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is integrated with the biosynthesis of branched α-glucan (glycogen), with mutants in either biosynthetic pathway significantly compromised for survival on abiotic surfaces. While both trehalose and α-glucan are important for abiotic stress tolerance, we show they counter distinct stresses. Trehalose is important for the PAO1 osmotic stress response, with trehalose synthesis mutants displaying severely compromised growth in elevated salt conditions. However, trehalose does not contribute directly to the PAO1 desiccation response. Rather, desiccation tolerance is mediated directly by GlgE-derived α-glucan, with deletion of the glgE synthase gene compromising PAO1 survival in low humidity but having little effect on osmotic sensitivity. Desiccation tolerance is independent of trehalose concentration, marking a clear distinction between the roles of these two molecules in mediating responses to abiotic stress.  相似文献   

15.
海藻糖——昆虫的血糖   总被引:5,自引:0,他引:5  
海藻糖(trehalose)是由2个葡萄糖分子通过α,α-1,1糖苷键连接的一种非还原性双糖。海藻糖作为昆虫的血糖,对于生物的能量代谢和抗逆等方面具有重要的作用。文章从昆虫海藻糖的发现、海藻糖的化学性质、昆虫中海藻糖的生理作用、代谢途径等方面进行综述,并对昆虫中海藻糖的进一步研究作了展望。  相似文献   

16.
Trehalose has many potential applications in biotechnology and the food industry due to its protective effect against environmental stress. Our work explores microbiological production methods based on the capacity of Corynebacterium glutamicum to excrete trehalose. We address here raising trehalose productivity through homologous overexpression of maltooligosyltrehalose synthase and the maltooligosyltrehalose trehalohydrolase genes. In addition, heterologous expression of the UDP-glucose pyrophosphorylase gene from Escherichia coli improved the supply of glycogen. Gene expression effects were tested on enzymatic activities and intracellular glycogen content, as well as on accumulated and excreted trehalose. Overexpression of the treY gene and the treY/treZ synthetic operon significantly increased maltooligosyltrehalose synthase activity, the rate-limiting step, and improved the specific productivity and the final titer of trehalose. Furthermore, a strong decrease was noted in glycogen accumulation. Expression of galU/treY and galU/treYZ synthetic operons showed a partial recovery in the intracellular glycogen levels and a significant improvement in both intra- and extracellular trehalose content.  相似文献   

17.
18.
Trehalose dimycolates and monomycolates isolated from a variety of Mycobacteria species as well as synthetic trehalose mycolates and trehalose behenylbehenate produced granulomatous responses in the lungs of mice. Trehalose alone or mycolic acids or their methyl esters, however, did not. These data suggest that the sugar moiety of these defined fatty acid esters is required for the production of this cellular inflammatory reaction. When mice were challenged with virulent Mycobactorium tuberculosis they showed increased resistance against infection during the time when the granulomatous response was greatest.  相似文献   

19.
Trehalose and glycogen accumulate in Saccharomyces cerevisiae when growth conditions deteriorate. It has been suggested that aside from functioning as storage factors and stress protectants, these carbohydrates may be required for cell cycle progression at low growth rates under carbon limitation. By using a mutant unable to synthesize trehalose and glycogen, we have investigated this requirement of trehalose and glycogen under carbon-limited conditions in continuous cultures. Trehalose and glycogen levels increased with decreasing growth rates in the wild-type strain, whereas no trehalose or glycogen was detected in the mutant. However, the mutant was still able to grow and divide at low growth rates with doubling times similar to those for the wild-type strain, indicating that trehalose and glycogen are not essential for cell cycle progression. Nevertheless, upon a slight increase of extracellular carbohydrates, the wild-type strain degraded its reserve carbohydrates and was able to enter a cell division cycle faster than the mutant. In addition, wild-type cells survived much longer than the mutant cells when extracellular carbon was exhausted. Thus, trehalose and glycogen have a dual role under these conditions, serving as storage factors during carbon starvation and providing quickly a higher carbon and ATP flux when conditions improve. Interestingly, the CO2 production rate and hence the ATP flux were higher in the mutant than in the wild-type strain at low growth rates. The possibility that the mutant strain requires this steady higher glycolytic flux at low growth rates for passage through Start is discussed.  相似文献   

20.
《Insect Biochemistry》1988,18(6):531-538
Studies were made on 13C and 31P NMR in larvae of two species of silkworm, Bombyx mori and Philosamia cynthia ricini, in vivo as well as in vitro to determine the pathways of glucose utilization, especially those to amino acids as components of silk fibroin. Results showed that the 13C of [1-13C]glucose administered orally into 5th instar larvae of both species was incorporated into glucose-1-phosphate, glucose-6-phosphate and trehalose. Serine, glutamate, glutamine, citrate, malate, trehalose and sorbitol-6-phosphate were detected in the hemolymphs of these larvae as metabolites of [1-13C]glucose. Two days after [1-13C]glucose administration, labeled alanine, glycine, serine, urea, glycogen, trehalose and glycerol were clearly detected in Bombyx larvae. Starvation caused rapid consumption of administered [1-13C]glucose with very little accumulation of 13C in glycogen or trehalose. In the in vivo31P NMR spectra of Bombyx larvae, ATP, arginine phosphate, sorbitol-6-phosphate, uridine diphosphoglucose, phosphoenolpyruvate and inorganic phosphate were detected with some sugar phosphates, such as glucose-1-phosphate and glucose-6-phosphate. During starvation, the intensity of the signal of inorganic phosphate increased and those of sugar phosphate other than sorbitol-6-phosphate decreased, but these changes were reversed by oral administration of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号