首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The vibrational cd (VCD) of a double-stranded RNA, poly(rA) - poly(rU), at pH 7 and moderate added salt concentration (0.1M) has been measured in both the base-stretching and phosphate-stretching regions of the ir as a function of temperature. The data in both cases show two distinct phase transitions. The first is from double- to a triple-stranded form, and the second is from triple- to single-stranded forms, which still retain substantial local order even up to 80°C. The nature of these transitions has been identified by comparison of the VCD and ir absorption spectra of the initially double-stranded samples with those of single-stranded poly(rA) and poly(rU) and with triple-stranded poly-(rA) -poly-(rU) poly (rU). The large differences in the VCD band shapes allows positive identification of the intermediate and final states. Thus under VCD-concentration conditions, a simple helix-to-coil transition can be eliminated for poly (rA ) - poly (rU) while such a two-step transition can be seen at low salt conditions. All of these observations are consistent with previous studies of the phase transitions of poly (rA) - poly (rU) under various salt conditions. Additionally, the VCD is indicative of premelting for all the triple-, double-, and single-strand complexes studied. The triple-strand complex did not show disproportionation to double strand on heating under these added salt conditions. The unusual VCD pattern for low temperature poly (rA) - poly (rU), as compared to high G? C content RNAs and DNAs, is qualitatively, but not quantitatively, explained using exciton coupling of localized dipolar transitions in each type of base within the strand. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Phase transitions were studied of the sodium salt of poly(rA).poly(rU) induced by elevated temperature without Ni(2+) and with Ni(2+) in 0.07 M concentration in D(2)O (approximately 0.4 [Ni]/[P]). The temperature was varied from 20 degrees C to 90 degrees C. The double-stranded conformation of poly(rA).poly(rU) was observed at room temperature (20 degrees C-23 degrees C) with and without Ni(2+) ions. In the absence of Ni(2+) ions, partial double- to triple-strand transition of poly(rA).poly(rU) occurred at 58 degrees C, whereas only single- stranded molecules existed at 70 degrees C. While poly(rU) did not display significant helical structure, poly(rA) still maintained some helicity at this temperature. Ni(2+) ions significantly stabilized the triple-helical structure. The temperature range of the stable triple-helix was between 45 degrees C and 70 degrees C with maximum stability around 53 degrees C. Triple- to single-stranded transition of poly(rA).poly(rU) occurred around 72 degrees C with loss of base stacking in single-stranded molecules. Stacked or aggregated structures of poly(rA) formed around 86 degrees C. Hysteresis took place in the presence of Ni(2+) during the reverse transition from the triple-stranded to the double-stranded form upon cooling. Reverse Hoogsteen type of hydrogen-bonding of the third strand in the triplex was suggested to be the most probable model for the triple-helical structure. VCD spectroscopy demonstrated significant advantages over infrared absorption or the related electronic CD spectroscopy.  相似文献   

3.
4.
Abstract

Phase transitions were studied of the sodium salt of poly(rA) ?poly(rU) induced by elevated temperature without Ni2+ and with Ni2+ in 0.07 M concentration in D2O (~0.4 [Ni]/[P]). The temperature was varied from 20° C to 90° C. The double-stranded conformation of poly(rA)?poly(rU) was observed at room temperature (20° C—23° C) with and without Ni2+ ions. In the absence of Ni2+ ions, partial double- to triple-strand transition of poly(rA) ?poly(rU) occurred at 58° C, whereas only single-stranded molecules existed at 70° C. While poly(rU) did not display significant helical structure, poly(rA) still maintained some helicity at this temperature. Ni2+ ions significantly stabilized the triple-helical structure. The temperature range of the stable triple-helix was between 45° C and 70° C with maximum stability around 53° C. Triple-to single-stranded transition of poly(rA) ?poly(rU) occurred around 72° C with loss of base stacking in single-stranded molecules. Stacked or aggregated structures of poly(rA) formed around 86° C. Hysteresis took place in the presence of Ni2+ during the reverse transition from the triple-stranded to the double-stranded form upon cooling. Reverse Hoogsteen type of hydrogen-bonding of the third strand in the triplex was suggested to be the most probable model for the triple-helical structure. VCD spectroscopy demonstrated significant advantages over infrared absorption or the related electronic CD spectroscopy.  相似文献   

5.
We have compared the properties of the poly(rA).oligo(dT) complex with those of the poly(rU).oligo(dA)n complex. Three main differences were found. First, poly(rA) and oligo(dT)n do not form a complex in concentrations of CsCl exceeding 2 M because the poly(rA) is insoluble in high salt. If the complex is made in low salt, it is destabilized if the CsCl concentration is raised. Complexes between poly(rU) and oligo(dA)n, on the other hand, can be formed in CsCl concentrations up to 6.6 M. Second, complexes between poly(rA) and oligo(dT)n are more rapidly destabilized with decreasing chain length than complexes between poly(rU) and oligo(dA)n. Third, the density of the complex between poly(rA) and poly(dT) in CsCl is slightly lower than that of poly(dT), whereas the density of the complex between poly(rU) and poly(dA) in CsCl is at least 300 g/cm3 higher than that of poly(dA). These results explain why denatured natural DNAs that bind poly(rU) in a CsCl gradient usually do not bind poly(rA).  相似文献   

6.
The study by resonance Raman spectroscopy with a 257 nm excitation wave-length of adenine in two single-stranded polynucleotides, poly rA and poly dA, and in three double-stranded polynucleotides, poly dA.poly dT, poly(dA-dT).poly(dA-dT) and poly rA.poly rU, allows one to characterize the A-genus conformation of polynucleotides containing adenine and thymine bases. The characteristic spectrum of the A-form of the adenine strand is observed, except small differences, for poly rA, poly rA.poly rU and poly dA.poly dT. Our results prove that it is the adenine strand which adopts the A-family conformation in poly dA.poly dT.  相似文献   

7.
Ultraviolet (UV) and infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy were used to study conformational transitions in the double-stranded poly(rA). poly(rU) and its components-single-stranded poly(rA) and poly(rU) in buffer solution (pH 6.5) with 0.1M Na+ and different Mg2+ and Cd2+ (10(-6) to 10(-2) M) concentrations. Transitions were induced by elevated temperature that changed from 10 up to 96 degrees C. IR absorption and VCD spectra in the base-stretching region were obtained for duplex, triplex, and single-stranded forms of poly(rA) . poly(rU) at [Mg2+],[Cd2+]/[P] = 0.3. For single-stranded polynucleotides, the kind of conformational transition (ordering --> disordering --> compaction, aggregation) is conditioned by the dominating type of Me2+-polymer complex that in turn depends on the ion concentration range. The phase diagram obtained for poly(rA) . poly(rU) has a triple point ([Cd2+] approximately 10(-4)M) at which the helix-coil (2 --> 1) transition is replaced with a disproportion transition 2AU --> A2U + poly(rA) (2 --> 3) and the subsequent destruction of the triple helix (3 --> 1). The 2 --> 1 transitions occur in the narrow temperature interval of 2 degrees -5 degrees . Unlike 2 --> 1 and 3 --> 1 melting, the disproportion 2 --> 3 transition is a slightly cooperative one and observed over a wide temperature range. At [Me2+] approximately 10(-3) M, the temperature interval of A2U stability is not less than 20 degrees C. In the case of Cd2+, it increases with the rise of ion concentration due to the decrease of T(m) (2-->3). The T(m) (3-->1) value is practically unchanged up to [Cd2+] approximately 10(-3)M. Differences between diagrams for Mg(2+) and Cd2+ result from the various kinds of ion binding to poly(rA).poly-(rU) and poly(rA).  相似文献   

8.
We have studied the interaction of poly(rA) and poly(rU) with natural DNAs containing (dA.dT)n sequences. The results indicate that hybridization of poly(rA) to denatured DNA can be used to estimate the size and frequency of large (dA.dT)n tracts, whereas hybridization with poly(rU) does not give reliable information on these points. In 6.6 M CsCl, poly(rU) can form stable complexes with denatured DNA containing short (dA)n tracts (n less than or equal to 6), whereas binding of poly(rA) to denatured DNA under these conditions requires much larger (dT)n tracts (estimated n greater than 13). Moreover, binding of poly(rA) requires pre-hybridization in low salt, because free poly(rA) precipitates in 6.6 M CsCl.  相似文献   

9.
We report the relative molar sound velocity increments, [U], partial molar volumes, V(o), and partial molar adiabatic compressibilities, K(S)(o), of the Li(+), Na(+), K(+), Rb(+), Cs(+), NH(4)(+), and N(CH(3))(4)(+) salts of poly(dAdT)poly(dAdT), poly(dGdC)poly(dGdC), poly(dIdC)poly(dIdC), poly(rA)poly(rU), poly(rG)poly(rC), poly(rI)poly(rC), and poly(rU) at 25 degrees C. When analyzing these data, we take into account the Donnan membrane equilibrium effect. Comparison between the values of [U], V(o), and K(S)(o) exhibited by the nucleic acid salts and respective chlorides (LiCl, NaCl, KCl, RbCl, CsCl, NH(4)Cl, and N(CH(3))(4)Cl) yields information about the state of counterion hydration in the vicinity of each nucleic acid structure studied here. Our analysis reveals that the poly(dGdC)poly(dGdC), poly(dIdC)poly(dIdC), and poly(rI)poly(rC) duplexes and single-stranded poly(rU) do not significantly influence the hydration properties of their condensed counterions. In the vicinity of these polymers, counterions retain their full hydration shells (within +/-15%). By contrast, counterions condensed around the poly(dAdT)poly(dAdT), poly(rA)poly(rU), and poly(rG)poly(rC) duplexes are significantly dehydrated and retain, respectively, only 65(+/-18)%, 34(+/-21)%, and 33(+/-9)% of their original hydration shells. Taken together, the volumetric data reported here provide important new information that ultimately may help us understand the central role that hydration and counterions play in modulating the conformational preferences of nucleic acids and the energetics of DNA recognition events.  相似文献   

10.
RNA-dependent ATPase from Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
A new RNA-dependent ATPase has been isolated from yeast chromatin extracts and partially characterized. The protein has a sedimentation coefficient of about 7 S. The enzyme hydrolyzes specifically ATP (or dATP) to ADP (or dADP) and Pi in the presence of Mg2+ or Mn2+ ions and requires a single-stranded polynucleotide as cofactor. The order of efficiency of synthetic polymers is poly(rU) > poly(rI) greater than or equal to poly(dU) > poly(rA) greater than or equal to poly(rC). Among natural polymers, single-stranded DNA and poly(rA)-containing mRNA from yeast are also active but less so than poly(rU). The enzyme exhibits a pH optimum of 8 and is fully inhibited by 0.25 M NaCl. The Km for ATP is0.2 mM. The resemblance between this ATPase and DNA-dependent ATPases from other sources, as well as the termination factor rho, is discussed.  相似文献   

11.
Fourier Transform Infrared Spectra of triple stranded polynucleotides containing homopurine dA or rA and homopyrimidine dT or rU strands have been obtained in H2O and D2O solutions as well as in hydrated films at various relative humidities. The spectra are interpreted by comparison with those of double stranded helixes with identical base and sugar composition. The study of the spectral domain corresponding to in-plane double bond stretching vibrations of the bases shows that whatever the initial duplex characterized by a different IR spectrum (A family form poly rA.poly rU, heternomous form poly rA.poly dT, B family form poly dA.poly dT), the triplexes present a similar IR spectrum reflecting similar base interactions. A particular attention is devoted to the 950-800 cm-1 region which contains marker bands of the sugar conformation in the nucleic acids. In solution the existence of only N (C3'endo-A family form) type of sugar pucker is detected in poly rU.poly rA.poly rU and poly dt.poly rA.poly rU. On the contrary absorption bands characteristic of both N (C3'endo-A family form) and S (C2'endo-B family form) type sugars are detected for poly rU.poly rA.poly dT, poly rU.poly dA.poly dT and poly dT.poly rA.poly dT. Finally mainly S (C2'endo-B family form) type sugars are observed in poly dT.poly dA.poly dT.  相似文献   

12.
The binding of Mg(2+) to single-stranded ribo- and deoxy-polynucleotides, poly(rA), poly(rU), poly(dA) and poly(dT), has been investigated in dilute aqueous solutions at pH 7.5 and 20 degrees C. A combination of ultrasound velocimetry, density, UV and CD spectroscopy have been employed to study hydration and spectral effects of Mg(2+) binding to the polynucleotides. Volume and compressibility effects of Mg(2+) binding to random-coiled poly(rU) and poly(dT) correspond to two coordination bonds probably between the adjacent phosphate groups. The same parameters for poly(rA)+Mg(2+) correspond to an inner-sphere complex with three-four direct contacts. However, almost no hydration effects are arising in binding to its deoxy analog, poly(dA), indicating mostly a delocalized binding mode. In agreement with hydration studies, optical investigations revealed almost no influence of Mg(2+) on poly(dA) properties, while it stabilizes and aggregates poly(rA) single-helix. The evidence presented here indicates that Mg(2+) are able to bind specifically to single-stranded polynucleotides, and recognize their composition and backbone conformation.  相似文献   

13.
The interaction of the 1,N6-etheno derivatives of poly(rA) (poly(epsilon rA] with poly(rU) has been studied by absorption and fluorescence spectroscopy. The stoichiometry of the interaction is found to be 1 epsilon A:1 rU and 1 epsilon A:2 rU as well as in the case of poly(rA)-poly(rU) interaction. The fluorescence properties, including the intensity and polarization of fluorescence, respond to the conformational transition of poly(epsilon rA)-poly(rU) complexes. The introduction of epsilon A groups into poly(rA) results in a marked decrease in the melting temperature, suggesting that epsilon A may destabilize the helical structure. The three-exponential decay law obtained with poly(epsilon rA)-poly(rU) complexes indicates the existence of at least three different stacked conformational states.  相似文献   

14.
Uno T  Aoki K  Shikimi T  Hiranuma Y  Tomisugi Y  Ishikawa Y 《Biochemistry》2002,41(43):13059-13066
The binding of the copper(II) complex of water-soluble meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to double-helical polynucleotides has been studied by optical absorption, circular dichroism (CD), and resonance Raman spectroscopic methods. The target polymers were RNA and RNA.DNA hybrids consisting of rA.rU, rI.rC, rA.dT, and rI.dC base pairs. Relative to the metal-free H(2)TMPyP [Uno, T., Hamasaki, K., Tanigawa, M., and Shimabayashi, S. (1997) Inorg. Chem. 36, 1676-1683], CuTMPyP binds to poly(rA).poly(dT) and poly(rA).poly(rU) with a greatly increased binding constant. The external self-stacking of the porphyrin on the surface of the polymers was evident from the strong conservative-type induced CD signals. The signal intensity correlated almost linearly with the number of stacking sites on the polymer except for poly(rA).poly(dT), which showed extraordinarily strong CD signals. Thus, the bound porphyrin may impose an ordered architecture on the polymer surface, the stacking being facilitated by the more planar nature of the CuTMPyP than the nonmetal counterpart. Resonance Raman spectra of the stacked CuTMPyP were indistinguishable from those of the intercalated one with positive delta(Cbeta-H) and negative delta(Cm-Py) bending shifts, and hence the stacked porphyrins are suggested to adopt a similar structure to that of intercalated ones. Porphyrin flattening by copper insertion opens a new avenue for medical applications of porphyrins, blocking biological events related to RNA and hybrids in malignant cells.  相似文献   

15.
16.
It is shown that molecular weights and molecular-weight distributions of poly(rA), and by implication other single-stranded polynucleotides, and synthetic and natural polyelectrolytes in general, can be determined by electrophoresis in polyacrylamide gels. It is shown that fractions of very narrow molecular-weight distribution can be obtained by preparative electrophoresis of polydisperse samples. Molecular-weight calibrations based on sedimentation coefficients of such fractions are given, and in aqueous systems do not coincide with calibrations for partially base-paired RNA species. Poly(rU) fractions fall on the same calibration as poly(rA). Relations between mobilities, relative to standard markers, and molecular weight for poly(rA) over a wide range of molecular weights are given, which allow rapid molecular-weight determination on poly(rA) samples, such as the segments found in many types of messenger RNA.  相似文献   

17.
Studies on spin-labeled polyriboadenylic acid   总被引:2,自引:0,他引:2  
A M Bobst 《Biopolymers》1972,11(7):1421-1433
Spin-labeled samples of poly rA, poly rU, and poly rG have been prepared, and physicochemical properties primarily of labeled poly rA are reported. The nitroxide radical, 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidinooxyl, is incorporated to a greater extent in poly rA and poly rU, as compared to poly rG. No incorporation is observed in the case of poly rC. Special attention has been paid to the separation of the covalently attached labels from the free labels, and to the preservation of the integrity of the chain length of the labeled polymers. The determination of molar extinction coefficients of the three labeled polymers indicates virtually no difference from those known for the chemically unpertubed polyribonucleotides. The correlation times for the spin-labeled single stranded poly rA and poly rU have been calculated. More mobile building blocks are found in poly rU as compared to poly rA. Conformational properties of labeled poly rA in aqueous solutions have been investigated using electron spin resonance, circular dichroism, and absorption spectroscopy. The objective of the study of labeled poly rA was to examine its conformational transitions upon the uptake of protons by the adenine bases. Based on electron spin resonance data there is strong evidence that the single strand-double strand transition can take place in three steps. In addition to the already known two forms of double-stranded poly rA in acidic solution, called A and B, it is suggested that a third phase, consisting possibly of large aggregates, is involved in the transition of the less protonated double strands to those of complete protonation.  相似文献   

18.
S1 is an acidic protein associated with the 3′ end of 16S RNA; it is indispensable for ribosomal binding of natural mRNA. We find that S1 unfolds single stranded stacked or helical polynucleotides (poly rA, poly rC, poly rU). It prevents the formation of poly (rA + rU) and poly (rI + rC) duplexes at 10–25 mM NaCl but not at 50–100 mM NaCl. Partial, salt reversible denaturation is also seen with coliphage MS2 RNA, E. coli rRNA and tRNA. Generally, only duplex structures with a Tm greater than about 55° are formed in the presence of S1. The protein unfolds single stranded DNA but not poly d(A·T).  相似文献   

19.
L J Ferrin  A S Mildvan 《Biochemistry》1986,25(18):5131-5145
The large fragment of DNA polymerase I (Pol I) effectively uses oligoribouridylates and oligoriboadenylates as templates, with kinetic properties similar to those of poly(U) and poly(A), respectively, and has little or no activity in degrading them. In the presence of such oligoribonucleotide templates, nuclear Overhauser effects (NOE's) were used to determine interproton distances within and conformations of substrates bound to the large fragment of Pol I, as well as conformations and interactions of the enzyme-bound templates. In the enzyme-oligo(rU)54 +/- 11-Mg2+dATP complex, the substrate dATP has a high anti-glycosidic torsional angle (chi = 62 +/- 10 degrees) and an O1'-endo/C3'-endo sugar pucker (delta = 90 +/- 10 degrees) differing only slightly from those previously found for enzyme-bound dATP in the absence of template [Ferrin, L.J., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694]. Both conformations are similar to those of deoxynucleotidyl units of B DNA but differ greatly from those of A or Z DNA. The conformation of the enzyme-bound substrate analogue AMPCPP (chi = 50 +/- 10 degrees, delta = 90 +/- 10 degrees) is very similar to that of enzyme-bound dATP and is unaltered by the binding of the template oligo(rU)54 +/- 11 or by the subsequent binding of the primer (Ap)9A. In the enzyme-oligo(rA)50-Mg2+TTP complex, the substrate TTP has an anti-glycosidic torsional angle (chi = 40 +/- 10 degrees) and an O1'-endo sugar pucker (delta = 100 +/- 10 degrees), indistinguishable from those found in the absence of template and compatible with those of B DNA but not with those of A or Z DNA. In the absence of templates, the interproton distances on enzyme-bound dGTP cannot be fit by a single conformation but require a 40% contribution from a syn structure (chi = 222 degrees) and a 60% contribution from one or more anti structures. The presence of the template oligo(rU)43 +/- 9 simplifies the conformation of enzyme-bound dGTP to a single structure with an anti-glycosyl angle (chi = 32 +/- 10 degrees) and an O1'-endo/C3'-endo sugar pucker (delta = 90 +/- 10 degrees), compatible with those of B DNA, possibly due to the formation of a G-U wobble base pair. However, no significant misincorporation of guanine deoxynucleotides by the enzyme is detected with oligo(rU) as template.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Fluorescence studies of the binding of IKe gene 5 protein to various polynucleotides were performed to obtain insight into the question as to what extent the binding characteristics of the gene 5 proteins of the IKe and M13 phages resemble and/or differ from each other. The fluorescence of IKe gene 5 protein is quenched 60% upon binding to most polynucleotides. At moderate salt concentrations, i.e., below 1 M salt, the binding stoichiometry is 4.0 +/- 0.5 nucleotides per IKe gene 5 protein monomer. The affinity of the protein for homopolynucleotides depends strongly on sugar and base type; in order of increasing affinities we find poly(rC) less than poly(dA) less than poly(rA) less than poly(dI) less than poly(rU) less than poly(dU) less than poly(dT). For most polynucleotides studied, the affinity depends linearly on the salt concentration: [d log (Kint omega)]/(d log [M+]) = -3. The binding is highly cooperative. The cooperativity parameter omega, as deduced from protein titration curves, is 300 +/- 150 and appears independent of the type of polynucleotide studied. Estimation of this binding parameter from salt titrations of gene 5 protein-polynucleotide complexes results in systematically higher values. A comparison of the binding data of the IKe and M13 gene 5 proteins shows that the fluorescence quenching, stoichiometry, order of binding affinities, and cooperativity in the binding are similar for both proteins. From this it is concluded that at least the DNA binding grooves of both proteins must show a close resemblance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号