首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Using methods designed for isolation of mutants defective in receptor-mediated endocytosis, a novel L-cell mutant was obtained that exhibits resistance to three different protein toxins as well as alterations in secretion. This mutant, LEFIC, is resistant to modeccin, Pseudomonas exotoxin, and ricin. These toxins, which enter the cytoplasm via receptor-mediated endocytosis, are thought to penetrate into cells at the level of late endosomes or the trans Golgi network. Early endosomal acidification appears to be normal in the mutant based on its accumulation of iron from transferrin and its sensitivity to diphtheria toxin A chain-transferrin conjugate. Within the secretory pathway two delays in transport of vesicular stomatitis virus (VSV) G protein were observed in LEFIC: a 20-30 min delay in acquisition of Endo H resistance and a 1-2 hr delay in appearance of newly synthesized G protein on the cell surface. Movement of endogenous proteins along the secretory pathway was also affected in LEFIC. Fibronectin secretion was delayed by 15 min, and membrane proteins were delayed in arrival at the cell surface. The phenotype of LEFIC is consistent with a defect in a component or compartment shared by both the late endocytic and constitutive secretory pathways.  相似文献   

3.
Herpes simplex virus (HSV) glycoprotein K (gK) is thought to be intimately involved in the process by which infected cells fuse because HSV syncytial mutations frequently alter the gK (UL53) gene. Previously, we characterized gK produced in cells infected with wild-type HSV or syncytial HSV mutants and found that the glycoprotein was localized to nuclear and endoplasmic reticulum membranes and did not reach the cell surface (L. Hutchinson, C. Roop, and D. C. Johnson, J. Virol. 69:4556-4563, 1995). In this study, we have characterized a mutant HSV type 1, denoted F-gK beta, in which a lacZ gene cassette was inserted into the gK coding sequences. Since gK was found to be essential for virus replication, F-gK beta was propagated on complementing cells which can express gK. F-gK beta produced normal plaques bounded by nonfused cells when plated on complementing cells, although syncytia were observed when the cells produced smaller amounts of gK. In contrast, F-gK beta produced only microscopic plaques on Vero cells and normal human fibroblasts (which do not express gK) and these plaques were reduced by 10(2) to 10(6) in number. Further, large numbers of nonenveloped capsids accumulated in the cytoplasm of F-gK beta-infected Vero cells, virus particles did not reach the cell surface, and the few enveloped particles that were produced exhibited a reduced capacity to enter cells and initiate an infection of complementing cells. Overexpression of gK in HSV-infected cells also caused defects in virus egress, although particles accumulated in the perinuclear space and large multilamellar membranous structures juxtaposed with the nuclear envelope were observed. Together, these results demonstrate that gK regulates or facilitates egress of HSV from cells. How this property is connected to cell fusion is not clear. In this regard, gK may alter cell surface transport of viral particles or other viral components directly involved in the fusion process.  相似文献   

4.
Herpes simplex virus (HSV) glycoprotein D (gD) plays an essential role in the entry of virus into cells. HSV mutants unable to express gD were constructed. The mutants can be propagated on VD60 cells, which supply the viruses with gD; however, virus particles lacking gD were produced in mutant-infected Vero cells. Virus particles with or without gD adsorbed to a large number (greater than 4 x 10(4] of sites on the cell surface; however, virions lacking gD did not enter cells. Cells pretreated with UV-inactivated virions containing gD (approximately 5 x 10(3) particles per cell) were resistant to infection with HSV type 1 (HSV-1) and HSV-2. In contrast, cells pretreated with UV-inactivated virions lacking gD could be infected with HSV-1 and HSV-2. If infectious HSV-1 was added prior to UV-inactivated virus particles containing gD, the infectious virus entered cells and replicated. Therefore, virus particles containing gD appear to block specific cell surface receptors which are very limited in number. Particles lacking gD are presumably unable to interact with these receptors, suggesting that gD is an essential receptor-binding polypeptide.  相似文献   

5.
We have isolated a variant line of mouse L cells, termed gro2C, which is partially resistant to infection by herpes simplex virus type 1 (HSV-1). Characterization of the genetic defect in gro2C cells revealed that this cell line harbors a specific defect in the heparan sulfate synthesis pathway. Specifically, anion-exchange high-performance liquid chromatography of metabolically radiolabeled glycosaminoglycans indicated that chondroitin sulfate moieties were synthesized normally in the mutant cells, whereas heparin-like chains were absent. Because of these properties, we have used these cells to investigate the role of heparan sulfate proteoglycans in the HSV-1 life cycle. In this report, we demonstrate that the partial block to HSV-1 infection in gro2C cells occurs in the virus entry pathway. Virus adsorption assays using radiolabeled HSV-1 (KOS) revealed that the gro2C cell surface is a relatively poor target for HSV-1 in that virus attachment was 85% lower in the mutant cells than in the parental L cell controls. A portion of the 15% residual virus adsorption was functional, however, insofar as gro2C cells were susceptible to HSV-1 infection in plaque assays and in single-step growth experiments. Moreover, although the number of HSV-1 plaques that formed in gro2C monolayers was reduced by 85%, the plaque morphology was normal, and the virus released from the mutant cells was infectious. Taken together, these results provide strong genetic evidence that heparan sulfate proteoglycans enhance the efficiency of HSV attachment to the cell surface but are otherwise not essential at any stage of the lytic cycle in culture. Moreover, in the absence of heparan sulfate, other cell surface molecules appear to confer susceptibility to HSV, leading to a productive viral infection.  相似文献   

6.
The promoters for each of the immediate-early genes from herpes simplex virus type 1 were cloned and fused to a chloramphenicol acetyltransferase cassette. These chimeric genes were used as targets in a transient expression assay to determine how the immediate-early gene products ICP4 and ICP0 and the virion-associated stimulatory protein Vmw65 affected their expression in HeLa and Vero cells. The basal level of expression from these cassettes differed significantly depending on the extent of 5'-flanking sequence and the cell line that served as host. The promoters from IE-4 and IE-0 behaved in a qualitatively similar fashion independent of the host cell. However, the promoter for ICP27 had a unique response pattern: in Vero cells it acted as an alpha gene promoter, whereas in HeLa cells its response was more like that of a beta gene promoter. The promoter sequences for ICP22 and ICP47 behaved as the IE-4 and IE-0 promoters did in HeLa cells, but their response to the effector molecules in Vero cells was unlike that of other alpha gene promoters we have studied. Evidence is also presented for a role for ICP27 in autoregulation.  相似文献   

7.
8.
Herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) is essential for virus entry into cells and forms a hetero-oligomer with a newly described viral glycoprotein, gL. Normal folding, posttranslational processing, and intracellular transport of both gH and gL depend upon the coexpression of gH and gL in cells infected with vaccinia virus vectors (L. Hutchinson, H. Browne, V. Wargent, N. Davis-Poynter, S. Primorac, K. Goldsmith, A. C. Minson, and D. C. Johnson, J. Virol. 66:2240-2250, 1992). Homologs of gH and gL have been found in herpesviruses of all subgroups, and thus it appears likely that the gH-gL complex serves a highly conserved function during herpesvirus penetration into cells. To examine the role of gL in the infectious cycle of HSV-1, a mutant HSV-1 unable to express gL was constructed by inserting a lacZ gene cassette into the coding sequences of the UL1 (gL) gene. Because gL was found to be essential for virus replication, cell lines capable of expressing gL were constructed to complement the virus mutant. In the absence of gL, virus particles were produced, and these particles reached the cell surface; however, gL-negative particles purified from infected cells were also deficient in gH. Mutant virions lacking gH and gL were able to adsorb onto cells but were unable to enter cells and initiate an infection. Further, the role of gL in fusion of infected cells was reexamined. A mutation in HSV-1 (804) which produces the syncytial phenotype had previously been mapped to a region of the HSV-1 genome which includes the UL1 gene and no other open reading frame. However, in contrast to this previous report, we found that the syncytial mutation in 804 affects the UL53 gene, which encodes gK, a gene commonly mutated in syncytial viruses.  相似文献   

9.
Herpes simplex virus (HSV) glycoprotein gD is a major component of the virion envelope and is thought to play an important role in the initial stages of viral infection and stimulates the production of high titers of neutralizing antibodies. We assumed that gD plays an essential role in virus replication, and so to complement viruses with mutations in the gD gene we constructed a cell line, denoted VD60, which is capable of expressing high levels of gD after infection with HSV. A recombinant virus, designated F-gD beta, in which sequences encoding gD and a nonessential glycoprotein, gI, were replaced by Escherichia coli beta-galactosidase sequences, was selected on the basis that it produced blue plaques on VD60 cell monolayers under agarose overlays containing 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal). F-gD beta was able to replicate normally on complementing VD60 cells. However, F-gD beta was unable to form plaques on noncomplementing Vero cells. Virions lacking gD were produced in normal amounts by Vero cells infected with F-gD beta, and the virus particles were distributed throughout the cytoplasm and on the cell surface, suggesting that gD is not essential for HSV envelopment and egress. Virions lacking gD were able to bind to cells, but were unable to initiate synthesis of viral early polypeptides. Plaque production of F-gD beta particles lacking gD was enhanced by polyethylene glycol treatment, suggesting that gD is essential for penetration of HSV into cells. Other HSV glycoproteins have been implicated in the entry of virus into cells, and thus this process appears to involve multiple interactions at the cell surface.  相似文献   

10.
The mouse L-cell mutant gro29 was selected originally for its inability to propagate herpes simplex virus; it shows severe defects in virus egress and the transport and processing of viral glycoproteins after infection. In this report, we show that uninfected gro29 cells display pleiotropic changes in protein secretion, oligosaccharide processing, and sensitivity to the toxins ricin and modeccin. Specifically, the rate of secretion of a nonglycosylated protein, human growth hormone, was reduced 70% in gro29 cells compared with the parental L cells. A direct measurement of the transport capacity of Golgi membranes in a cell-free assay suggests that gro29 cells contain less functional Golgi than parental cells. Despite this deficiency, N-linked oligosaccharides were processed efficiently in mutant cells, although there were differences in the structure of the mature forms. Lectin intoxication assays revealed that gro29 cells were cross-resistant to killing by the cytotoxic lectins ricin and modeccin, but not to wheat germ agglutinin, Ricinus communis agglutinin RCA120, or leucoagglutinin. Fluorescence labeling using fluorescein-conjugated lectins showed that uninfected gro29 cells expressed relatively few ricin-binding molecules, suggesting a possible mechanism for toxin resistance. These studies provide evidence that the processes of protein secretion, lectin intoxication, and herpes virus maturation and egress may share a common cellular component.  相似文献   

11.
Reproductive efficiency of herpes simplex virus type 1 has been determined in several normal and mutant human skin fibroblast lines. The mutant cell lines were derived from individuals diagnosed as having Duchenne muscular dystrophy, a disease thought to involve genetically determined membrane defects. Yields of infectious virus, determined by plaque assay on rabbit kidney cell monolayers, were consistently lower from dystrophic cells than from normal cells. The yield from dystrophic lines was 3–20% of the normal. The time course of production of infectious particles did not appear to vary between dystrophic and normal host cells. Also, the initiation of replication of the viral genome did not appear to be altered in the dystrophic lines. It is proposed that a late maturation function is involved in the lower virus productivity in dystrophic cells.  相似文献   

12.
13.
14.
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a serious disease of rice. A virulence- and xylanase-deficient mutant of Xoo was isolated following ethyl methane sulfonate (EMS) mutagenesis. A cosmid clone that restored virulence and xylanase secretion was obtained from a genomic library by functional complementation. Transposon mutagenesis and marker exchange studies revealed genes on the cloned DNA that were required for xylanase production and virulence. Sequence analysis with transposon-specific primers revealed that these genes were homologues of xps F and xps D, which encode components of a protein secretion system in Xanthomonas campestris pv. campestris. Enzyme assays showed xylanase accumulation in the periplasmic space and cytoplasm of the xps F mutant and the complementing clone restored transport to the extracellular space.  相似文献   

15.
Herpes simplex virus resistance and sensitivity to phosphonoacetic acid.   总被引:10,自引:19,他引:10       下载免费PDF全文
Phosphonoacetic acid (PAA) inhibited the synthesis of herpes simplex virus DNA in infected cells and the activity of the virus-specific DNA polymerase in vitro. In the presence of concentrations of PAA sufficient to prevent virus growth and virus DNA synthesis, normal amounts of early virus proteins (alpha- and beta-groups) were made, but late virus proteins (gamma-group) were reduced to less than 15% of amounts made in untreated infected cells. This residual PAA-insensitive synthesis of gamma-polypeptides occurred early in the virus growth cycle when rates were identical in PAA-treated and untreated infected cells. Passage of virus in the presence of PAA resulted in selection of mutants resistant to the drug. Stable clones of mutant viruses with a range of drug sensitivities were isolated and the emergence of variants resistant to high concentrations of PAA involved the sequential selection of mutants progressively better adapted to growth in the presence of the drug. Increased drug resistance of virus yield or plaque formation was correlated with increased resistance of virus DNA synthesis, gamma-protein synthesis, and resistance of the virus DNA polymerase reaction in vitro to the inhibitory effects of the drug. PAA-resistant strains of herpes simplex virus type 1 (HSV-1) complemented the growth of sensitive strains of homologous and heterologous types in mixed infections in the presence of the drug. Complementation was markedly dependent upon the proportions of the resistant and sensitive partners participating in the mixed infection. Intratypic (HSV-1A X HSV-1B) recombination of the PAA resistance marker(s), Pr, occurred at high frequency relative to plaque morphology (syn) and bromodeoxyuridine resistance (Br, thymidine kinase-negative phenotype) markers, with the most likely order being syn-Br-Pr. Recombinant viruses were as resistant or sensitive to PAA as the parental viruses, and viruses recombinant for their PAA resistance phenotype were also recombinant for the PAA resistance character of the virus DNA polymerase. The results provide additional evidence that the herpesvirus DNA polymerase is the site of action of PAA and illustrate the potential usefulness of PAA-resistant mutants in genetic studies of herpesviruses.  相似文献   

16.
The course of acute infection of mice with ts mutant or the native strain DNA and the antigens of HSV in brain nerve cells were determined. Virus DNA was detected in brains of all mice in both animal groups while the virus antigens--only in cells of mice infected with the native strain. It can be suggested, therefore, that the ability of ts mutant to replicate in central nervous system of the infected mice is lacking or much lower. The detection of virus nucleic acid 3-5 months after virus infection might indicate a possibility of establishing latent infection. However, ts mutant showed a significantly lower possibility of latency induction, as compared with highly virulent strains. It was found that the mutant ability to induce latent infection was markedly increased when mice were treated with both ts mutant and Depo-Medrol as immunosuppressive agent. This finding shows both a possibility of increase of frequency of latent infections in the state of immunosuppression, and of activation of the latent infection (recurrence of acute form of infection).  相似文献   

17.
The aim of the study was to characterize biological features of the sensitive mutant of HSV-1, derived from McIntyre strain by numerous virus passages at lowered replication temperature (28 degrees C). Pathogenicity of obtained ts mutant for inbred mice lines, CFW/Pzh and BALB/cPzh, was determined. Statistically significant decrease in virulence of the mutant for these mouse lines was demonstrated, as compared with the native virus strain, propagated at 37 degrees C. Immunogenic activity of ts mutant of HSV-1 defined by the possibility of mouse protection against infection with high virulent was determined. Mice, which at the time of immunization with ts mutant received Depo-Medrol--an immunosuppressive agent--were also found to be capable of inducing defense mechanisms to infection with the native strain.  相似文献   

18.
Herpes simplex virus induces the replication of foreign DNA.   总被引:4,自引:0,他引:4       下载免费PDF全文
Plasmids containing the simian virus 40 (SV40) DNA replication origin and the large T gene are replicated efficiently in Vero monkey cells but not in rabbit skin cells. Efficient replication of the plasmids was observed in rabbit skin cells infected with herpes simplex virus type 1 (HSV-1) and HSV-2. The HSV-induced replication required the large T antigen and the SV40 replication origin. However, it produced concatemeric molecules resembling replicative intermediates of HSV DNA and was sensitive to phosphonoacetate at concentrations known to inhibit the HSV DNA polymerase. Therefore, it involved the HSV DNA polymerase itself or a viral gene product(s) which was expressed following the replication of HSV DNA. Analyses of test plasmids lacking SV40 or HSV DNA sequences showed that, under some conditions, HSV also induced low-level replication of test plasmids containing no known eucaryotic replication origins. Together, these results show that HSV induces a DNA replicative activity which amplifies foreign DNA. The relevance of these findings to the putative transforming potential of HSV is discussed.  相似文献   

19.
Herpes simplex virus infections are the cause of significant morbidity, and currently used therapeutics are largely based on modified nucleoside analogs that inhibit viral DNA polymerase function. To target this disease in a new way, we have identified and optimized selective thiazolylphenyl-containing inhibitors of the herpes simplex virus (HSV) helicase-primase enzyme. The most potent compounds inhibited the helicase, the primase and the DNA-dependent ATPase activities of the enzyme with IC50 (50% inhibitory concentration) values less than 100 nM. Inhibition of the enzymatic activities was through stabilization of the interaction between the helicase-primase and DNA substrates, preventing the progression through helicase or primase catalytic cycles. Helicase-primase inhibitors also prevented viral replication as demonstrated in viral growth assays. One compound, BILS 179 BS, displayed an EC50 (effective concentration inhibiting viral growth by 50%) of 27 nM against viral growth with a selectivity index greater than 2,000. Antiviral activity was also demonstrated for multiple strains of HSV, including strains resistant to nucleoside-based therapies. Most importantly, BILS 179 BS was orally active against HSV infections in murine models of HSV-1 and HSV-2 disease and more effective than acyclovir when the treatment frequency per day was reduced or when initiation of treatment was delayed up to 65 hours after infection. These studies validate the use of helicase-primase inhibitors for the treatment of acute herpesvirus infections and provide new lead compounds for optimization and design of superior anti-HSV agents.  相似文献   

20.
Earlier studies have shown that herpes simplex virus 1 (HSV-1) blocks the interferon response pathways, at least at two sites, by circumventing the effects of activation of protein kinase R by double-stranded RNA and interferon and through the degradation of promyelocytic leukemia protein (PML) since interferon has no antiviral effects in PML(-/-) cells. Here we report on two effects of viral genes on other sites of the interferon signaling pathway. (i) In infected cells, Jak1 kinase associated with interferon receptors and Stat2 associated with the interferon signaling pathway rapidly disappear from infected cells. The level of interferon alpha receptor is also reduced, albeit less drastically at times after 4 h postinfection. Other members of the Stat family of proteins were either decreased in amount or posttranslationally processed in a manner different from those of mock-infected cells. The decrease in the levels of Jak1 and Stat2 may account for the decrease in the formation of complexes consisting of Stat1 or ISGF3 and DNA sequences containing the interferon-stimulated response elements after exposure to interferon. (ii) The disappearance of Jak1 and Stat2 was related at least in part to the function of the virion host shutoff protein, the product of the viral U(L)41 gene. Consistent with this observation, a mutant lacking the U(L)41 gene and treated with interferon produced lesser amounts of a late protein (U(L)38) than the wild-type parent. We conclude that HSV-1 blocks the interferon signaling pathways at several sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号