首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aqueous solution of glucose and glycine was heated under reflux for 4 h and extracted with ethyl acetate. Reversed phase HPLC of the extract revealed a new DNA strand-breaking substance, which was purified by repeated HPLC and identified as 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). DDMP induced DNA strand breaking in a dose- and time-dependent manner. It was active to break DNA strands at pH 7.4 and 9.4. Its pyranone skeleton was destroyed at the pH values. DNA strand breaking by DDMP was inhibited by superoxide dismutase, catalase, scavengers for hydroxyl radical, spin trapping agents and metal chelators, and the breaking was enhanced by Fe(III) ion. A mixture of DDMP and a spin trap DMPO gave electron spin resonance signals of a spin adduct DMPO-OH, indicating generation of hydroxyl radical. DDMP was found to be mutagenic to Salmonella typhimurium TA100 without metabolic activation. These results show DDMP generated active oxygen species to cause DNA strand breaking and mutagenesis.  相似文献   

2.
Ozone has been shown to induce lung tumors in mice. The reactivity of ozone with DNA in an aqueous solution was investigated by a DNA sequencing technique using 32P-labeled DNA fragments. Ozone induced cleavages in the deoxyribose-phosphate backbone of double-stranded DNA, which were reduced by hydroxyl radical scavengers, suggesting the participation of hydroxyl radicals in the cleavages. The ozone-induced DNA cleavages were enhanced with piperidine treatment, which induces cleavages at sites of base modification, but the inhibitory effect of hydroxyl radical scavengers on the piperidine-induced cleavages was limited. Main piperidine-labile sites were guanine and thymine residues. Cleavages at some guanine and thymine residues after piperidine treatment became more predominant with denatured single-stranded DNA. Exposure of calf thymus DNA to ozone resulted in a dose-dependent increase of the 8-oxo-7,8-dihydro-2'-deoxyguanosine formation, which was partially inhibited by hydroxyl radical scavengers. ESR studies using 5,5-dimethylpyrroline-N-oxide (DMPO) showed that aqueous ozone produced the hydroxyl radical adduct of DMPO. In addition, the fluorescein-dependent chemiluminescence was detected during the decomposition of ozone in a buffer solution and the enhancing effect of D2O was observed, suggesting the formation of singlet oxygen. However, no or little enhancing effect of D2O on the ozone-induced DNA damage was observed. These results suggest that DNA backbone cleavages were caused by ozone via the production of hydroxyl radicals, while DNA base modifications were mainly caused by ozone itself and the participation of hydroxyl radicals and/or singlet oxygen in base modifications is small, if any. A possible link of ozone-induced DNA damage to inflammation-associated carcinogenesis as well as air pollution-related carcinogenesis is discussed.  相似文献   

3.
Titanium dioxide (TiO2) is a potential photosensitizer for photodynamic therapy. In this study, the mechanism of DNA damage catalyzed by photo-irradiated TiO2 was examined using [32P]-5'-end-labeled DNA fragments obtained from human genes. Photo-irradiated TiO2 (anatase and rutile) caused DNA cleavage frequently at the guanine residue in the presence of Cu(II) after E. coli formamidopyrimidine-DNA glycosylase treatment, and the thymine residue was also cleaved after piperidine treatment. Catalase, SOD and bathocuproine, a chelator of Cu(I), inhibited the DNA damage, suggesting the involvement of hydrogen peroxide, superoxide and Cu(I). The photocatalytic generation of Cu(I) from Cu(II) was decreased by the addition of SOD. These findings suggest that the inhibitory effect of SOD on DNA damage is due to the inhibition of the reduction of Cu(II) by superoxide. We also measured the formation of 8-oxo-7,8-dihydro-2' -deoxyguanosine, an indicator of oxidative DNA damage, and showed that anatase is more active than rutile. On the other hand, high concentration of anatase caused DNA damage in the absence of Cu(II). Typical free hydroxyl radical scavengers, such as ethanol, mannnitol, sodium formate and DMSO, inhibited the copper-independent DNA photodamage by anatase. In conclusion, photo-irradiated TiO2 particles catalyze the copper-mediated site-specific DNA damage via the formation of hydrogen peroxide rather than that of a free hydroxyl radical. This DNA-damaging mechanism may participate in the phototoxicity of TiO2.  相似文献   

4.
The photo-induced cleavage of pGEM-7zf-NIS super-coiled DNA by Cu(ii)-meso-tetrakis(n-N-methylpyridiniumyl)porphyrins (n = 2, 3, 4 referred to as o-, m- and p-CuTMPyP, respectively) and their binding mode were investigated in this study. m-CuTMPyP was most efficient in cleavage than o- and p-CuTMPyP isomers. Cleavage was suppressed by N(2) bubbling, suggesting that the cleavage occurred by an oxidative cleavage mechanism. Sodium azide, an (1)O(2) quencher, and DMSO, a hydroxyl radical scavenger, inhibited cleavage, indicating that hydroxyl radicals and singlet oxygen were likely reactive species responsible for the cleavage. Reduced linear dichroism spectroscopy showed angles of o-CuTMPyP's electric transition moments, in which the periphery pyridinium ring was prevented from free rotation, of 59° and 61° with respect to the local DNA helix axis. The spectra of m- and p-CuTMPyP complexed with pGEM-7zf-NIS DNA were characterized by large signals in the Soret band, coincident with those of known intercalated porphyrins.  相似文献   

5.
Organic hydroperoxides can replace NADPH in supporting the oxidation of ethanol by liver microsomes. Experiments were carried out to evaluate the role of hydroxyl radicals in the organic hydroperoxide-catalyzed reaction. Maximum rates of ethanol oxidation occurred in the presence of either 0.5 mM cumene hydroperoxide or 2.5 mM t-butyl hydroperoxide and were linear for 2 to 4 min. The Km for ethanol was about 12 mM and Vmax was about 8 nmol ethanol oxidized/min/mg microsomal protein. Besides ethanol, the organic hydroperoxides supported the oxidation of longer-chain alcohols (1-butanol), and secondary alcohols (isopropanol). The organic hydroperoxide-supported oxidation of alcohols was not affected by several hydroxyl-radical scavengers such as dimethylsulfoxide, mannitol, or 2-keto-4-thiomethylbutyrate which blocked NADPH-dependent oxidation of alcohols by 50% or more. Iron-EDTA, which increases the production of hydroxyl radicals, increased the NADPH-dependent oxidation of ethanol, whereas desferrioxamine, which blocks the production of hydroxyl radicals, inhibited the NADPH-dependent oxidation of ethanol. Neither iron-EDTA nor desferrioxamine had any effect on the organic hydroperoxide-supported oxidation of ethanol. Cumene-and t-butyl hydroperoxide did not support microsomal oxidation of hydroxyl-radical scavengers. These results suggest that, in contrast to the NADPH-dependent oxidation of ethanol, free-hydroxyl radicals do not play a role in the organic hydroperoxide-dependent oxidation of ethanol by microsomes. Ethanol appears to be oxidized by two pathways in microsomes, one which is dependent on hydroxyl radicals, and the other which appears to be independent of these oxygen radicals.  相似文献   

6.
The cucumber (Cucumis sativus L.) plants were sprayed with 20 mM 5-aminolevulinic acid or distilled water (control) and incubated in dark for 14 hr. The thylakoid membranes prepared from the intact chloroplasts, isolated from the above plants in dark, were illuminated with low light intensity (100 W/m2) for 30 min. Due 10 photodynamic reactions, the photochemical function of photosystem II was damaged by 50% in treated thylakoids whereas it was only slightly (8%) affected in control thylakoids. The photosystem I was, however, not affected. The exogenous electron donors, MnCl2, diphenyl carbazide and NH2OH failed to restore the photosystem II activity suggesting that the photodynamic damage had taken place very close to photosystem II reaction center. Singlet oxygen scavenger, histidine, could protect the photosystem II activity while superoxide radical scavengers, superoxide dismutase and 1, 2-dihydroxybenzene-3, 5-disulphonic acid disodium salt, and hydroxyl radical scavenger, formate, failed to protect the same.  相似文献   

7.
The role of oxygen radicals in lysis of K562 target cells by human natural killer (NK) cells was determined by addition of scavengers of these free radicals. Lysis was greatly reduced under hypoxic conditions. Superoxide dismutase and cytochrome c, scavengers of superoxide anions, and catalase and scavengers of hypochlorite had no effect on lysis. Of 15 hydroxyl radical scavengers tested, 13 inhibited lysis. These were not toxic, because cell morphology and spontaneous chromium release were not affected and preculture with scavengers was not inhibitory. These scavengers differed widely in structure, but degree of inhibition of lysis correlated with their rate constants (k) for reaction with hydroxyl radical (k vs log inhibitor concentration required to decrease lysis by 50%: r = -0.9202, p less than 0.001), showing that inhibition was due to inactivation of the hydroxyl radical. Target cell binding was not reduced at concentrations that inhibited lysis. Inhibitors of the lipoxygenase pathway also decreased lysis, suggesting this pathway to be the source of hydroxyl radicals. In view of the reported requirements for hydroxyl radical-mediated lipid peroxidation for optimal secretory activity in a number of cell types, it appears that the generation of hydroxyl radicals by NK cells is required for delivery of cytotoxic factors.  相似文献   

8.
The photodynamic properties of a second-generation photodynamic sensitizer, meta-tetra(hydroxyphenyl)chlorin (mTHPC) were studied by dye-sensitized photoinactivation (650 nm) of HT29 human adenocarcinoma cells in culture. The photocytotoxicity of mTHPC in vitro depended on the presence of molecular oxygen. A strong inhibition of the photocytotoxicity of mTHPC was observed upon addition of sodium azide, a known singlet oxygen quencher. Photocytotoxicity was not inhibited by scavengers of superoxide anion radical, hydrogen peroxide and hydroxyl radicals. We suggest that mTHPC photosensitizes cell killing predominantly by type II, singlet oxygen-mediated photodynamic reactions. Illumination of cells preloaded with mTHPC induced peroxidation of membrane lipids. Inhibition of photoperoxidation by alpha-tocopherol (0.1 mM) present during illumination did not result in any decrease in toxicity, suggesting that reactions of lipid peroxidation play only a minor role in the overall photocytotoxic effect of mTHPC.  相似文献   

9.
In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen–Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure–activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones’ effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class.  相似文献   

10.
The antitumor antibiotic bleomycin degrades DNA in the presence of ferric ions and H2O2 or in the presence of ferric ions, oxygen, and ascorbic acid. When DNA degradation is measured as formation of base propenals by the thiobarbituric acid assay, it is not inhibited by superoxide dismutase and scavengers of the hydroxyl radical or by catalase (except that catalase inhibits in the bleomycin/ferric ion/H2O2 system by removing H2O2). Using the technique of gas chromatography/mass spectrometry with selected-ion monitoring, we show that DNA degradation is accompanied by formation of small amounts of modified DNA bases. The products formed are identical with those generated when hydroxyl radicals react with DNA bases. Base modification is significantly inhibited by catalase and partially inhibited by scavengers of the hydroxyl radical and by superoxide dismutase. We suggest that the bleomycin-oxo-iron ion complex that cleaves the DNA to form base propenals can decompose in a minor side reaction to generate hydroxyl radical, which accounts for the base modification in DNA. However, hydroxyl radical makes no detectable contribution to the base propenal formation.  相似文献   

11.
T Ochi  M Ohsawa 《Mutation research》1985,143(3):137-142
The effect of various scavengers of active oxygen species on the induction of chromosomal aberrations by cadmium chloride (CdCl2) was investigated in cultured Chinese hamster V79 cells. Incidences of chromosomal aberrations by CdCl2 were partially or fully reduced by the presence of catalase, mannitol (a scavenger of hydroxyl radicals) and butylated hydroxytoluene (BHT, an antioxidant). These findings may indicate participation of the active oxygen species such as hydrogen peroxide (H2O2) or hydroxyl radicals in the clastogenicity of cadmium. In contrast, superoxide dismutase (SOD) and dimethylfuran (a scavenger of singlet oxygen) did not influence incidences of chromosomal aberrations by CdCl2. These results suggest that superoxide anion and singlet oxygen are not directly involved in the clastogenicity of the metal. The presence of aminotriazole (an inhibitor of catalase) increased incidences of chromosomal aberrations by CdCl2. This emphasizes participation of H2O2 in the clastogenicity of cadmium.  相似文献   

12.
Despite a wealth of experimental evidence concerning the efficacy of the biocidal action associated with the TiO(2) photocatalytic reaction, our understanding of the photochemical mechanism of this particular biocidal action remains largely unclear. It is generally accepted that the hydroxyl radical (.OH), which is generated on the surface of UV-illuminated TiO(2), plays the main role. However, our understanding of the exact mode of action of the hydroxyl radical in killing microorganisms is far from complete, and some studies report that other reactive oxygen species (ROS) (H(2)O(2) and O(2).(-), etc.) also play significant roles. In particular, whether hydroxyl radicals remain bound to the surface or diffuse into the solution bulk is under active debate. In order to examine the exact mode of action of ROS in inactivating the microorganism, we tested and compared the levels of photocatalytic inactivation of MS-2 phage and Escherichia coli as representative species of viruses and bacteria, respectively. To compare photocatalytic microbial inactivation with the photocatalytic chemical degradation reaction, para-chlorobenzoic acid, which rapidly reacts with a hydroxyl radical with a diffusion-limited rate, was used as a probe compound. Two different hydroxyl radical scavengers, tert-butanol and methanol, and an activator of the bulk phase hydroxyl radical generation, Fe(2+), were used to investigate their effects on the photocatalytic mode of action of the hydroxyl radical in inactivating the microorganism. The results show that the biocidal modes of action of ROS are very different depending on the specific microorganism involved, although the reason for this is not clear. It seems that MS-2 phage is inactivated mainly by the free hydroxyl radical in the solution bulk but that E. coli is inactivated by both the free and the surface-bound hydroxyl radicals. E. coli might also be inactivated by other ROS, such as O(2).(-) and H(2)O(2), according to the present results.  相似文献   

13.
14.
Photosensitive dyes representative of the thiazines, xanthenes, acridines, and phenazines mediated phototoxicity in Escherichia coli B. The observed phototoxicity was sensitizer-, light-, and oxygen-dependent and is therefore a photodynamic effect. Hydroxyl radical scavengers conferred protection against the photodynamic action of all of the representative dyes. The extent of protection was dependent on the concentration of scavenger and on the in vitro reactivity of the scavenger with the hydroxyl radical. Exogenous superoxide dismutase and catalase partially protected the cells against the dye-mediated phototoxicity, and prior induction of intracellular superoxide dismutase and catalase by growth in glucose minimal medium containing manganese and paraquat substantially protected E. coli B against the photodynamic action of all of the dyes examined. Combinations of protective treatments against the phototoxicity of all four classes of dyes, including superoxide dismutase and catalase preinduction and addition of extracellular superoxide dismutase and catalase or the addition of hydroxyl radical scavengers, provided nearly complete protection against the oxygen-dependent component of dye-mediated lethality. E. coli B grown in glucose minimal medium containing manganese and photosensitive dyes induced manganese superoxide dismutase. The extent of induction was correlated with the dyes' ability to photooxidize NADH in vitro. Thus, oxygen radicals are primarily responsible for the oxygen-dependent toxicity of the photosensitive dyes examined, and one adaptive response of E. coli B to a dye-mediated oxidative threat is to induce superoxide dismutase.  相似文献   

15.
Two chemiluminescence approaches have been used for study of active oxygen species produced by the TiO2 photocatalytic reaction. One is based on flow injection analysis (FIA)-luminol chemiluminescence (CL); another is a time-resolved CL method. In the FIA-CL experiment, an UV-illuminated TiO2 suspension and water were passed into a mixing cell by two separate flow lines. Luminol solution was injected into the water flow line at different times. The injected luminol reacted with active oxygen species generated by the TiO2 photocatalytic reaction in a mixing coil and produced CL. It was found that the maximum CL was detected at the first injection of luminol. CL intensity decreased with time of injection. When the luminol was injected after 5 min, the CL intensity was almost unchanged. Addition of scavengers of active oxygen species indicated that the CL produced early in the 5 min was caused by O2- and H2O2, while CL after 5 min was only from H2O2. In the time-resolved CL, the third harmonic wavelength of Nd:YAG laser (355 nm) was used as a UV light source, and CL was detected by a PMT and recorded in a millisecond time scale using a digital oscilloscope. It was found that CL induced by the photocatalytic reaction increased with concentration of the TiO2 suspension. Scavengers of active oxygen species of *OH, O2- and H2O2 were added to study the involvement of the active oxygen species.  相似文献   

16.
Sulfonamides of halogenated bacteriochlorins bearing Cl or F substituents in the ortho positions of the phenyl rings have adequate properties for photodynamic therapy, including strong absorption in the near-infrared (λ(max) ≈ 750 nm, ε ≈ 10(5) M(-1) cm(-1)), controlled photodecomposition, large cellular uptake, intracellular localization in the endoplasmic reticulum, low cytotoxicity, and high phototoxicity against A549 and S91 cells. The roles of type I and type II photochemical processes are assessed by singlet oxygen luminescence and intracellular hydroxyl radical detection. Phototoxicity of halogenated sulfonamide bacteriochlorins does not correlate with singlet oxygen quantum yields and must be mediated both by electron transfer (superoxide ion, hydroxyl radicals) and by energy transfer (singlet oxygen). The photodynamic efficacy is enhanced when cellular death is induced by both singlet oxygen and hydroxyl radicals.  相似文献   

17.
Mononucleosomes were released from both isolated mammalian (hog thyroid) and protozoan (Tetrahymena) nuclei by the bleomycin-induced DNA-strand breaking reaction. Trout sperm nuclei, on the other hand, were protected from the bleomycin-mediated DNA degradation. The mononucleosomes released from the bleomycin-treated nuclei contained the core histones H2A, H2B, H3, and H4; while HMG1 and HMG2 proteins, in addition to the core histones, were detected in the mononucleosomes obtained by micrococcal nuclease digestion of nuclei. HMGs, but not H1 histone, were dissociated into the supernatant by cleavage of chromatin DNA with bleomycin, whereas both HMGs and H1 were found in that fraction by digestion of nuclei with micrococcal nuclease. HMG1 and HMG2 were exclusively dissociated from chromatin with 1 mM bleomycin under the solvent condition where the DNA strand-breaking activity of the drug is repressed. These observations suggest the possibility that bleomycin preferentially binds to linker DNA regions not occupied by H1 histone in chromatin and exclusively dissociates HMG proteins and breaks the DNA strand. The results of the effects on bleomycin-induced DNA cleavage of nuclei of various drugs including polyamines, chelating agents, intercalating antibiotics such as mitomycin C or adriamycin, and radical scavengers are also presented.  相似文献   

18.
S A Lesko  J L Drocourt  S U Yang 《Biochemistry》1982,21(20):5010-5015
DNA-protein and DNA interstrand cross-links were induced in isolated chromatin after treatment with H2O2 and ferrous ethylenediaminetetraacetate (EDTA). Retention of DNA on membrane filters after heating of chromatin in a dissociating solvent indicated the presence of a stable linkage between DNA and protein. Treatment of protein-free DNA with H2O2/Fe2+-EDTA did not result in enhanced filter retention. Incubation of cross-linked chromatin with proteinase K completely eliminated filter retention. Resistance to S1 nuclease after a denaturation-renaturation cycle was used to detect DNA interstrand cross-links. Heating the treated chromatin at 45 degrees C for 16 h and NaBH4 reduction enhanced the extent of interstrand cross-linking. The following data are consistent with, but do not totally prove, the hypothesis that cross-links are induced by hydroxyl radicals generated in Fenton-type reactions: (1) cross-linking was inhibited by hydroxyl radical scavengers; (2) the degree of inhibition of DNA interstrand cross-links correlated very closely with the rate constants of the scavengers for reaction with hydroxyl radicals; (3) cross-linking was eliminated or greatly reduced by catalase; (4) the extent of cross-linking was directly related to the concentration of Fe2+-EDTA. Partial inhibition of cross-linking by superoxide dismutase indicates that superoxide-driven Fenton chemistry is involved. The data indicate that DNA cross-linking may play a role in the manifestation of the biological activity of agents or systems that generate reactive hydroxyl radicals.  相似文献   

19.
The luminol-dependent chemiluminescence of mouse peritoneal macrophages during phagocytosis of opsonized zymosan was studied by using specific active oxygen scavengers and metabolic inhibitors. Extracellular hydrogen peroxide and superoxide anion were shown to contribute immensely to the induction of the chemiluminescence. The role of the hydroxyl radical was rather insignificant, whereas singlet oxygen was not involved in this process. The interaction between luminol and peroxide was shown to be peroxidase-dependent. An inhibitory analysis revealed that the interaction between luminol, peroxide and superoxide anion obeyed a hybrid enzyme-free radical mechanism.  相似文献   

20.
Copper in the presence of excess 1,10-phenanthroline, a reducing agent, and H2O2 causes DNA base damage as well as strand breakage. We have reported in previous work that a strong chemiluminescence was followed by DNA base damage in this system, which is characteristic of guanine. In the present work, the mechanism of the chemiluminescence was studied. Results show that the luminescence was inhibited by all three classes of reactive oxygen species (*OH, O2-, (1)O2) scavengers to different degrees. Singlet oxygen scavengers showed the most powerful inhibition while the other two classes of scavengers were relatively weaker. The emission intensity in D2O was 3-fold that in H2O. Comparing the effect of scavengers on the luminescence of DNA with that of dGMP, the ratio of inhibition was similar. On the other hand, DNA breakage analysis showed that inhibition by the singlet oxygen scavenger NaN3 of strand breakage was strong and comparable to that of the scavengers of the two oxygen radicals. The results suggest that singlet oxygen may be a major factor for the chemiluminescence of guanine, while DNA strand breakage may be caused by many active species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号