首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we examined the effects the prostacyclin receptor (IP) agonist cicaprost exhibited on U46619-mediated thromboxane A(2) receptor (TP) signaling in platelets and compared it to that which occurs in human embryonic kidney (HEK) 293 cells stably overexpressing the individual TPalpha or TPbeta isoforms. Consistent with previous studies, cicaprost abrogated U46619-mediated platelet aggregation and mobilization of intracellular calcium ([Ca(2+)](i)). In HEK 293 cells, signaling by TPalpha, but not TPbeta, was subject to IP-mediated desensitization in a protein kinase A-dependent, protein kinase C-independent manner. Desensitization of TPalpha signaling was independent of the nature of the IP agonist used, the level of IP expression, or the subtype of G(q) protein. Signaling by TP(Delta)(328), a truncated variant of TP devoid of the divergent residues of the TPs, or by TPalpha(S329A), a site-directed mutant of TPalpha, were insensitive to IP agonist activation. Whole cell phosphorylations established that TPalpha, but not TPbeta or TPalpha(S329A), is subject to IP-mediated phosphorylation and that TPalpha phosphorylation is inhibited by H-89. Thus, we conclude that TPalpha, but not TPbeta, is subject to cross-desensitization by IP mediated through direct protein kinase A phosphorylation at Ser(329) and propose that TPalpha may be the isoform physiologically relevant to TP:IP-mediated vascular hemostasis.  相似文献   

2.
Thromboxane (TX) A(2) plays a central role in hemostasis, regulating platelet activation status and vascular tone. We have recently established that the TP beta isoform of the human TXA(2) receptor (TP) undergoes rapid, agonist-induced homologous desensitization of signalling largely through a G protein-coupled receptor kinase (GRK) 2/3-dependent mechanism with a lesser role for protein kinase (PK) C. Herein, we investigated the mechanism of desensitization of signalling by the TP alpha isoform. TP alpha undergoes profound agonist-induced desensitization of signalling (intracellular calcium mobilization and inositol 1,4,5 trisphosphate generation) in response to the TXA(2) mimetic U46619 but, unlike that of TP beta, this is independent of GRKs. Similar to TP beta, TP alpha undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, PKC mechanism where Ser(145) within intracellular domain (IC)(2) represents the key phospho-target. TP alpha also undergoes more profound sustained PKC- and PKG-dependent desensitization where Thr(337) and Ser(331), respectively, within its unique C-tail domain were identified as the phospho-targets. Desensitization was impaired by the nitric oxide synthase (NOS), soluble guanylyl cyclase (sGC) and PKG inhibitors L-NAME, LY 83583 and KT5823, respectively, indicating that homologous desensitization of TP alpha involves nitric oxide generation and signalling. Consistent with this, U46619 led to rapid phosphorylation/activation of endogenous eNOS. Collectively, data herein suggest a mechanism whereby agonist-induced PKC phosphorylation of Ser(145) partially and transiently impairs TP alpha signalling while PKG- and PKC-phosphorylation at both Ser(331) and Thr(337), respectively, within its C-tail domain profoundly desensitizes TP alpha, effectively terminating its signalling. Hence, in addition to the agonist-mediated PKC feedback mechanism, U46619-activation of the NOS/sGC/PKG pathway plays a significant role in inducing homologous desensitization of TP alpha.  相似文献   

3.
Human embryonic kidney (HEK)293 cells stably transfected with the His-tagged thromboxane receptor alpha (TPalpha) was used to study the phosphorylation and desensitization of the receptor induced by 8-bromo-cyclic GMP (8-Br-cGMP), sodium nitroprusside (SNP), or S-nitroso-glutathione (SNG). These agents are known to activate cGMP-dependent protein kinase (PKG). Pretreatment of cells with these agents attenuated significantly agonist I-BOP induced Ca(2+) release. These agents also induced dose-dependent phosphorylation of the TPalpha as demonstrated by increased (32)P-labeling of the receptor from cells prelabeled with (32)Pi. To facilitate the identification of the intracellular domains involved in phosphorylation, glutathione S-transferase (GST)-intracellular domain fusion proteins were used as substrates for the purified PKG. It was found that only the GST-C-terminal tail fusion protein could serve as a substrate for the PKG. To identify the specific serine/threonine residues in the C-terminal tail being phosphorylated, various alanine mutants of these serine/threonine residues were checked for their ability to serve as substrates. It was found that the Ser-331 of the C-terminal tail was primarily involved in the PKG-mediated phosphorylation. That Ser-331 is a predominant site of phosphorylation was supported by in vivo studies in which HEK293 cells expressing the S331A mutant receptor showed little phosphorylation induced by any of the above three agents. Furthermore, HEK293 cells expressing the S331A mutant receptor pretreated with any of the above three agents became responsive to the agonist I-BOP-induced Ca(2+) release. These results indicate that Ser-331 of the TPalpha is the primary site responsible for the phosphorylation and the desensitization of the receptor induced by agents that activate the PKG.  相似文献   

4.
In humans, thromboxane (TX) A(2) signals through the TPalpha and TPbeta isoforms of the TXA(2) receptor that exhibit common and distinct roles. For example, Gq/phospholipase (PL)Cbeta signaling by TPalpha is directly inhibited by the vasodilators prostacyclin and nitric oxide (NO) whereas that signaling by TPbeta is unaffected. Herein, we investigated whether TPalpha and/or TPbeta regulate G(12)/Rho activation and whether that signaling might be differentially regulated by prostacyclin and/or NO. Both TPalpha and TPbeta independently regulated RhoA activation and signaling in clonal cells over-expressing TPalpha or TPbeta and in primary human aortic smooth muscle cells (1 degrees AoSMCs). While RhoA-signaling by TPalpha was directly impaired by prostacyclin and NO through protein kinase (PK)A- and PKG-dependent phosphorylation, respectively, signaling by TPbeta was not directly affected by either agent. Collectively, while TPalpha and TPbeta contribute to RhoA activation, our findings support the hypothesis that TPalpha is involved in the dynamic regulation of haemostasis and vascular tone, such as in response to prostacyclin and NO. Conversely, the role of TPbeta in such processes remains unsolved. Data herein provide essential new insights into the physiologic roles of TPalpha and TPbeta and, through studies in AoSMCs, reveal an additional mode of regulation of VSM contractile responses by TXA(2).  相似文献   

5.
We have recently shown that the platelet integrin alpha(IIb)beta(3) is activated by von Willebrand factor (vWF) binding to its platelet receptor, glycoprotein Ib-IX (GPIb-IX), via the protein kinase G (PKG) signaling pathway. Here we show that GPIb-IX-mediated activation of integrin alpha(IIb)beta(3) is inhibited by dominant negative mutants of Raf-1 and MEK1 in a reconstituted integrin activation model in Chinese hamster ovary (CHO) cells and that the integrin-dependent platelet aggregation induced by either vWF or low dose thrombin is inhibited by MEK inhibitors PD98059 and U0126. Thus, mitogen-activated protein kinase (MAPK) pathway is important in GPIb-IX-dependent activation of platelet integrin alpha(IIb)beta(3). Furthermore, vWF binding to GPIb-IX induces phosphorylation of Thr-202/Tyr-204 of extracellular signal-regulated kinase 2 (ERK2). GPIb-IX-induced ERK2 phosphorylation is inhibited by PKG inhibitors and enhanced by overexpression of recombinant PKG. PKG activators also induce ERK phosphorylation, indicating that activation of MAPK pathway is downstream from PKG. Thus, our data delineate a novel integrin activation pathway in which ligand binding to GPIb-IX activates PKG that stimulates MAPK pathway, leading to integrin activation.  相似文献   

6.
It is generally accepted that G protein-coupled receptors stimulate soluble guanylyl cyclase (sGC)-mediated cGMP production indirectly, by increasing nitric oxide (NO) synthase activity in a calcium- and kinase-dependent manner. Here we show that normal and GH(3) immortalized pituitary cells expressed alpha(1)beta(1)-sGC heterodimer. Activation of adenylyl cyclase by GHRH, pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal peptide, and forskolin increased NO and cGMP levels, and basal and stimulated cGMP production was abolished by inhibition of NO synthase activity. However, activators of adenylyl cyclase were found to enhance this NO-dependent cGMP production even when NO was held constant at basal levels. Receptor-activated cGMP production was mimicked by expression of a constitutive active protein kinase A and was accompanied with phosphorylation of native and recombinant alpha(1)-sGC subunit. Addition of a protein kinase A inhibitor, overexpression of a dominant negative mutant of regulatory protein kinase A subunit, and substitution of Ser(107)-Ser(108) N-terminal residues of alpha(1)-subunit with alanine abolished adenylyl cyclase-dependent cGMP production without affecting basal and NO donor-stimulated cGMP production. These results indicate that phosphorylation of alpha(1)-subunit by protein kinase A enlarges the NO-dependent sGC activity, most likely by stabilizing the NO/alpha(1)beta(1) complex. This is the major pathway by which adenylyl cyclase-coupled receptors stimulate cGMP production.  相似文献   

7.
Long-term infusion of prostacyclin, or its analogs, is an effective treatment for severe pulmonary arterial hypertension. However, dose escalation is often required to maintain efficacy. The aim of this study was to investigate the mechanisms of prostacyclin receptor desensitization using the prostacyclin analog cicaprost in rat pulmonary artery smooth muscle cells (PASMCs). Desensitization of the cAMP response occurred in 63 nM cicaprost after a 6-h preincubation with agonist. This desensitization was reversed 12 h after agonist removal, and resensitization was inhibited by 10 microg/ml of cycloheximide. Desensitization was heterologous since desensitization to other G(s)alpha-adenylyl cyclase (AC)-coupled agonists, isoproterenol (1 microM), adrenomedullin (100 nM), or bradykinin (1 microM), was also reduced by preincubation with cicaprost. The reduced cAMP response to prolonged cicaprost exposure appeared to be due to inhibition of AC activity since the responses to the directly acting AC agonist forskolin (3 microM) and the selective AC5 activator NKH-477 were similarly reduced. Expression of AC2 and AC5/6 protein levels transiently decreased after 1 h of cicaprost exposure. The PKA inhibitor H-89 (1 microM) added 1 h before cicaprost preincubation (6 h, 63 nM) completely reversed cicaprost-induced desensitization, whereas the PKC inhibitor bisindolylmaleimide (100 nM) was only partly effective. Desensitization was not prevented by the G(i) inhibitor pertussis toxin. In conclusion, chronic treatment of PASMCs with cicaprost induced heterologous, reversible desensitization by inhibition of AC activity. Our data suggest that heterologous G(s)alpha desensitization by cicaprost is mediated predominantly by a PKA-inhibitable isoform of AC, most likely AC5/6.  相似文献   

8.
Gap-junctional coupling among neurons is subject to regulation by a number of neurotransmitters including nitric oxide. We studied the mechanisms by which NO regulates coupling in cells expressing Cx35, a connexin expressed in neurons throughout the central nervous system. NO donors caused potent uncoupling of HeLa cells stably transfected with Cx35. This effect was mimicked by Bay 21-4272, an activator of guanylyl cyclase. A pharmacological analysis indicated that NO-induced uncoupling involved both PKG-dependent and PKG-independent pathways. PKA was involved in both pathways, suggesting that PKG-dependent uncoupling may be indirect. In vitro, PKG phosphorylated Cx35 at three sites: Ser110, Ser276, and Ser289. A mutational analysis indicated that phosphorylation on Ser110 and Ser276, sites previously shown also to be phosphorylated by PKA, had a significant influence on regulation. Ser289 phosphorylation had very limited effects. We conclude that NO can regulate coupling through Cx35 and that regulation is indirect in HeLa cells.  相似文献   

9.
The intrinsic protein-tyrosine kinase activity of the epidermal growth factor (EGF) receptor is required for signal transduction. Increased protein-tyrosine kinase activity is observed following the binding of EGF to the receptor. However, signaling is rapidly desensitized during EGF treatment. We report that EGF receptors isolated from desensitized cells exhibit a lower protein-tyrosine kinase activity than EGF receptors isolated from control cells. The mechanism of desensitization of kinase activity can be accounted for, in part, by the EGF-stimulated phosphorylation of the receptor at Ser1046/7, a substrate for the multifunctional calmodulin-dependent protein kinase II in vitro. Mutation of Ser1046/7 by replacement with Ala residues blocks desensitization of the EGF receptor protein-tyrosine kinase activity. Furthermore, this mutation causes a marked inhibition of the EGF-stimulated endocytosis and down-regulation of cell surface receptors. Thus, the phosphorylation site Ser1046/7 is required for EGF receptor desensitization in EGF-treated cells. This regulatory phosphorylation site is located at the carboxyl terminus of the EGF receptor within the subdomain that binds src homology 2 regions of signaling molecules.  相似文献   

10.
Prolonged treatment of human platelets with the prostacyclin analog iloprost led to desensitization of the response to various prostaglandin derivatives. However, basal adenylyl cyclase activity and stimulation by agents acting directly via Gs, the stimulatory guanine-nucleotide-binding regulatory protein of adenylyl cyclase, were likewise decreased. Reconstitution of desensitized membranes with purified Gs from turkey erythrocytes indicated no alteration in the catalyst itself. However, the function of Gs (in cholate extracts) appeared to be severely impaired when reconstituted with adenylyl cyclase catalyst. Modification of Gs was also indicated by its altered sedimentation in sucrose density gradients. From Western blots, the alpha subunit of Gs, alpha s, from control platelets sedimented as a 5.6S species, while that from desensitized cells appeared at higher S values (in a polydisperse distribution). Activation by guanosine 5'-[gamma-thio]triphosphate of Gs from control platelets shifted alpha s to 3.5-3.7S, while activation of Gs from desensitized platelets induced such shift only for a minor portion of alpha s. This small fraction alone appeared to be susceptible to ADP-ribosylation by cholera toxin/[32P]NAD. Furthermore, an antibody directed against the C-terminal hexadecapeptide of alpha s precipitated much less alpha s from cholate extracts derived from desensitized platelets. Modification of alpha s during desensitization was also suggested from cross-linking experiments using the homobifunctional agent bismaleimidohexane: alpha s from desensitized platelets formed a single product of 80 kDa, while that from untreated platelets yielded a doublet (100 kDa and 110 kDa).  相似文献   

11.
Attenuation of CRH receptor type 1 (CRH-R1) signaling activity might involve desensitization and uncoupling of CRH-R1 from intracellular effectors. We investigated the desensitization of native CRH-R in human myometrial cells from pregnant women and recombinant CRH-R1alpha stably overexpressed in human embryonic kidney (HEK) 293 cells. In both cell types, CRH-R1-mediated adenylyl cyclase activation was susceptible to homologous desensitization induced by pretreatment with high concentrations of CRH. Time course studies showed half-maximal desensitization occurring after approximately 40 min of pretreatment and full recovery of CRH-R1alpha functional response within 2 h of removal of CRH pretreatment. In HEK 293 cells, desensitization of CRH-R1alpha was associated with receptor phosphorylation and subsequent endocytosis. To analyze the mechanism leading to CRH-R1alpha desensitization, we overexpressed a truncated beta-arrestin (319-418) and performed coimmunoprecipitation and G protein-coupled receptor kinase (GRK) translocation studies. We found that GRK3 and GRK6 are the main isoforms that interact with CRH-R1alpha, and that recruitment of GRK3 requires Gbetagamma-subunits as well as beta-arrestin. Site-directed mutagenesis of Ser and Thr residues in the CRH-R1alpha C terminus, identified Thr399 as important for GRK-induced receptor phosphorylation and desensitization.We conclude that homologous desensitization of CRH-R1alpha involves the coordinated action of multiple GRK isoforms, Gbeta gamma dimers and beta-arrestin. Based on our identification of key amino acid(s) for GRK-dependent phosphorylation, we demonstrate the importance of the CRH-R1alpha carboxyl tail for regulation of receptor activity.  相似文献   

12.
Thromboxane (TX) A(2) is a potent stimulator of platelet activation/aggregation and smooth muscle contraction and contributes to a variety of pathologies within the vasculature. In this study, we investigated the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated by examining the mechanism of agonist-induced desensitization of intracellular signalling and second messenger generation by TPbeta. It was established that TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) has been identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs. TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization. Thromboxane (TX) A(2) is a potent stimulator of platelet aggregation and smooth muscle contraction and contributes to a variety of vascular pathologies. Herein the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated was investigated by examining the mechanism of its agonist-induced desensitization of intracellular signalling and second messenger generation. TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) was identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization.  相似文献   

13.
14.
alpha(2)-adrenergic receptors (alpha(2)AR) couple to multiple effectors including adenylyl cyclase and phospholipase C. We hypothesized that signaling selectivity to these effectors is dynamically directed by kinase-sensitive domains within the third intracellular loop of the receptor. Substitution of Ala for Ser232, which is in the N-terminal region of this loop in the alpha(2A)AR, resulted in a receptor that was markedly uncoupled ( approximately 82% impairment) from stimulation of inositol phosphate accumulation while the capacity to inhibit adenylyl cyclase remained relatively intact. In S232A alpha(2A)AR transfected cell membranes, agonist-promoted [(35)S]GTPgammaS binding was reduced by approximately 50%. Coexpression of modified G proteins rendered insensitive to pertussis toxin revealed that the S232A receptor was uncoupled from both G(i) and G(o). S232 is a potential PKC phosphorylation site, and whole cell phosphorylation studies showed that the mutant had depressed phosphorylation compared to wild type (1.3- vs 2.1-fold/basal). Consistent with S232 directing coupling to phospholipase C, PMA exposure resulted in approximately 67% desensitization of agonist-promoted inositol phosphate accumulation without significantly affecting inhibition of adenylyl cyclase. The dominant effect of mutation or phosphorylation at this site on inositol phosphate as compared to cAMP signaling was found to most likely be due to the low efficiency of signal transduction via phospholipase C vs adenylyl cyclase. Taken together, these results indicate that S232 acts as a selective, PKC-sensitive, modulator of effector coupling of the alpha(2A)AR to inositol phosphate stimulation. This represents one mechanism by which cells route stimuli directed to multifunctional receptors to selected effectors so as to attain finely targeted signaling.  相似文献   

15.
Following activation by ligand, most G protein-coupled receptors undergo rapid phosphorylation. This is accompanied by a drastic decrease in the efficacy of continued or repeated stimulation, due to receptor uncoupling from G protein and receptor internalization. Such processing steps have been shown to be absolutely dependent on receptor phosphorylation in the case of the N-formyl peptide receptor (FPR). In this study, we report results that indicate that the mechanisms responsible for desensitization and internalization are distinct. Using site-directed mutagenesis of the serine and threonine residues of the FPR carboxyl terminus, we have characterized regions that differentially regulate these two processes. Whereas substitution of all 11 Ser/Thr residues in the carboxyl terminus prevents both desensitization and internalization, substitution of four Ser/Thr residues between 328-332 blocks desensitization but has no effect on internalization. Similarly, substitution of four Ser/Thr residues between positions 334 and 339 results in a deficit in desensitization but again no decrease in internalization, suggesting that phosphorylation at either site evokes receptor internalization, whereas maximal desensitization requires phosphorylation at both sites. These results also indicate that receptor internalization is not involved in the process of desensitization. Further analysis of the residues between 328-332 revealed that restoration either of Ser(328) and Thr(329) or of Thr(331) and Ser(332) was sufficient to restore desensitization, suggesting that phosphorylation within either of these two sites, in addition to sites between residues 334 and 339, is sufficient to produce desensitization. Taken together, these results indicate that the mechanisms involved in FPR processing (uncoupling from G proteins and internalization) are regulated differentially by phosphorylation at distinct sites within the carboxyl terminus of the FPR. The relevance of this paradigm to other G protein-coupled receptors is discussed.  相似文献   

16.
The prostacyclin receptor (IP) is primarily coupled to G alpha(s)-dependent activation of adenylyl cyclase; however, a number of studies indicate that the IP may couple to other secondary effector systems perhaps in a species-specific manner. In the current study, we investigated the specificity of G protein:effector coupling by the mouse (m) IP overexpressed in human embryonic kidney 293 cells and endogenously expressed in murine erythroleukemia cells. The mIP exhibited efficient G alpha(s) coupling and concentration-dependent increases in cAMP generation in response to the IP agonist cicaprost; however, mIP also coupled to G alpha(i) decreasing the levels of cAMP in forskolin-treated cells. mIP coupling to G alpha(i) was pertussis toxin-sensitive and was dependent on protein kinase (PK) A activation status. In addition, the mIP coupled to phospholipase C (PLC) activation in a pertussis toxin-insensitive, G alpha(i)-, G beta gamma-, and PKC-independent but in a G alpha(q)- and PKA-dependent manner. Whole cell phosphorylation assays demonstrated that the mIP undergoes cicaprost-induced PKA phosphorylation. mIP(S357A), a site-directed mutant of mIP, efficiently coupled to G alpha(s) but failed to couple to G alpha(i) or to efficiently couple to G alpha(q):PLC. Moreover, mIP(S357A) did not undergo cicaprost-induced phosphorylation confirming that Ser(357) is the target residue for PKA-dependent phosphorylation. Finally, co-precipitation experiments permitted the detection of G alpha(s), G alpha(i), and G alpha(q) in the immunoprecipitates of mIP, whereas only G alpha(s) was co-precipitated with mIP(S357A) indicating that Ser(357) of mIP is essential for G alpha(i) and G alpha(q) interaction. Moreover, inhibition of PKA blocked co-precipitation of mIP with G alpha(i) or G alpha(q). Taken together our data indicate that the mIP, in addition to coupling to G alpha(s), couples to G alpha(i) and G alpha(q); however, G alpha(i) and G alpha(q) coupling is dependent on initial cicaprost-induced mIP:G alpha(s) coupling and phosphorylation of mIP by cAMP-dependent PKA where Ser(357) was identified as the target residue for PKA phosphorylation.  相似文献   

17.
Estrogens promote bone health in part by increasing osteocyte survival, an effect that requires activation of the protein kinases Akt and ERK1/2, but the molecular mechanisms involved are only partly understood. Because estrogens increase nitric oxide (NO) synthesis and NO can have anti-apoptotic effects, we examined the role of NO/cGMP signaling in estrogen regulation of osteocyte survival. Etoposide-induced death of MLO-Y4 osteocyte-like cells, assessed by trypan blue staining, caspase-3 cleavage, and TUNEL assays, was completely prevented when cells were pre-treated with 17β-estradiol. This protective effect was mimicked when cells were pre-treated with a membrane-permeable cGMP analog and blocked by pharmacological inhibitors of NO synthase, soluble guanylate cyclase, or cGMP-dependent protein kinases (PKGs), supporting a requirement for NO/cGMP/PKG signaling downstream of 17β-estradiol. siRNA-mediated knockdown and viral reconstitution of individual PKG isoforms demonstrated that the anti-apoptotic effects of estradiol and cGMP were mediated by PKG Iα and PKG II. Akt and ERK1/2 activation by 17β-estradiol required PKG II, and cGMP mimicked the effects of estradiol on Akt and ERK, including induction of ERK nuclear translocation. cGMP induced BAD phosphorylation on several sites, and experiments with phosphorylation-deficient BAD mutants demonstrated that the anti-apoptotic effects of cGMP and 17β-estradiol required BAD phosphorylation on Ser(136) and Ser(155); these sites were targeted by Akt and PKG I, respectively, and regulate BAD interaction with Bcl-2. In conclusion, 17β-estradiol protects osteocytes against apoptosis by activating the NO/cGMP/PKG cascade; PKG II is required for estradiol-induced activation of ERK and Akt, and PKG Iα contributes to pro-survival signaling by directly phosphorylating BAD.  相似文献   

18.
Oxygen is involved in cell signaling through oxygenases and oxidases and this applies especially for the vascular system. Nitric oxide (*NO) and epoxyarachidonic acids are P450-dependent monooxygenase products and prostacyclin is formed via cyclooxygenase and a heme-thiolate isomerase. The corresponding vasorelaxant mechanisms are counteracted by superoxide which not only traps *NO but through the resulting peroxynitrite blocks prostacyclin synthase by nitration of an active site tyrosine residue. In a model of septic shock, this leads to vessel constriction by activation of the thromboxane A2-prostaglandin endoperoxide H2 receptor. This sequence of events is part of endothelial dysfunction in which the activated vascular smooth muscle counteracts and regenerates vessel tone by cyclooxygenase-2-dependent prostacyclin synthesis. Peroxynitrite was found to activate cyclooxygenases by providing the peroxide tone at nanomolar concentrations. Such new insights into the control of vascular function have allowed us to postulate a concept of redox regulation in which a progressive increase of superoxide production by NADPH-oxidase, mitochondria, xanthine oxidase, and even uncoupled NO-synthase triggers a network of signals originating from an interaction of *NO with superoxide.  相似文献   

19.
To investigate the mechanisms of agonist-promoted desensitization of the alpha 2-adrenergic receptor (alpha 2AR), the human alpha 2AAR and a mutated form of the receptor were expressed in CHW cells. After cells were exposed to epinephrine for 30 min, the ability of the wild type alpha 2AAR to mediate inhibition of forskolin-stimulated adenylyl cyclase was depressed by approximately 78%. To assess the role of receptor phosphorylation during desensitization, cells were incubated with 32Pi, exposed to agonist, and alpha 2AAR purified by immunoprecipitation with a fusion protein antibody. Agonist-promoted desensitization was found to be accompanied by phosphorylation of the alpha 2AAR in vivo. The beta-adrenergic receptor kinase (beta ARK) is known to phosphorylate purified alpha 2AAR in vitro. We found that heparin, a beta ARK inhibitor, ablated short term agonist-induced desensitization of alpha 2AAR, while such desensitization was unaffected by inhibition of protein kinase A. To further assess the role of beta ARK, we constructed a mutated alpha 2AAR which has a portion of the third intracellular loop containing 9 serines and threonines (potential phosphorylation sites) deleted. This mutated alpha 2AAR failed to undergo short term agonist-induced desensitization. Agonist promoted in vivo phosphorylation of this mutated receptor was reduced by 90%, consistent with the notion that receptor phosphorylation at sites in the third intracellular loop plays a critical role in alpha 2AAR desensitization. After 24 h of agonist exposure, an even more profound desensitization of alpha 2AAR occurred, which was not accompanied by a decrease in receptor expression. Rather, long term agonist-induced desensitization was found to be due in part to a decrease in the amount of cellular Gi, which was not dependent on receptor third loop phosphorylation sites.  相似文献   

20.
The protein kinase C (PKC) family is an essential signaling mediator in platelet activation and aggregation. However, the relative importance of the major platelet PKC isoforms and their downstream effectors in platelet signaling and function remain unclear. Using isolated human platelets, we report that PKCdelta, but not PKCalpha or PKCbeta, is required for collagen-induced phospholipase C-dependent signaling, activation of alpha(IIb)beta(3), and platelet aggregation. Analysis of PKCdelta phosphorylation and translocation to the membrane following activation by both collagen and thrombin indicates that it is positively regulated by alpha(IIb)beta(3) outside-in signaling. Moreover, PKCdelta triggers activation of the mitogen-activated protein kinase-kinase (MEK)/extracellular-signal regulated kinase (ERK) and the p38 MAPK signaling. This leads to the subsequent release of thromboxane A(2), which is essential for collagen-induced but not thrombin-induced platelet activation and aggregation. This study adds new insight to the role of PKCs in platelet function, where PKCdelta signaling, via the MEK/ERK and p38 MAPK pathways, is required for the secretion of thromboxane A(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号