首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current restoration measures of degraded, acidified heathland ecosystems have not always been successful in the Netherlands. Positive effects of a restored hydrology are often counteracted by acidification of the soil and the local groundwater system. Liming of the heathlands in the catchment of moorland pools might contribute to the restoration of both habitats. Experimental catchment liming was carried out in two degraded Dutch heathlands, with doses varying between 2 and 6 tons/ha. Catchment liming resulted in increased pH and base cation concentrations in the highest elevated limed parts, as well as in the lower situated, nonlimed heath areas and moorland pools. Generally, catchment liming created suitable conditions for the return of heathland target species, and the positive effects lasted for at least 6 years. The response of the heathland vegetation to the liming has, however, been slow because only a small number of endangered plant species increased in abundance. In contrast, four Red List soft‐water macrophytes strongly increased in abundance in the moorland pool. Our results show that, even with the slow return of Red List plant species, catchment liming can be a successful management tool for the restoration of the acidified heathland landscape.  相似文献   

2.
Many shallow softwater lakes are being affected by eutrophication and acidification. In these small lakes decaying organic material usually accumulates and characteristic plant and animal species disappear. In many degraded lakes organic matter and macrophytes are being removed in order to restore the lakes to their original state. To assess the effects of restoration management in softwater lakes on aquatic macroinvertebrates, changes in the species assemblages were studied in four degraded lakes in the Netherlands undergoing restoration measures. The degraded lakes still harboured species characteristic of pristine softwaters. However, most of these species were not recorded after restoration measures were taken. Species’ densities declined dramatically during the execution of restoration measures. Swimming and abundant species were more likely to survive the restoration measures than other species. The first years after restoration, the lakes did not meet the habitat requirements for a number of species. Species requiring vegetation for ovipositioning, animal food sources and swards of vegetation as habitat declined. Because recolonization is expected to be restricted, it is recommended to ensure the survival of relict populations when taking measures to restore degraded softwater lakes. This may be achieved by phasing restoration measures in space and time, hereby minimizing mortality during the execution of restoration measures and by preserving habitat conditions required by characteristic species.  相似文献   

3.
1. Nutrient and chlorophyll a levels, and bacterial numbers of 84 glacial lakes in the Tatra Mountains (Slovakia and Poland, Central Europe) were determined to assess the impact of catchment vegetation and water acidity on lake trophic status. 2. Catchment vegetation was the crucial factor governing nutrient content of lakes. 3. Concentrations of organic carbon, organic nitrogen, and chlorophyll a, and bacterial numbers were tightly correlated with total phosphorus (TP) content. Their levels were the highest in forest lakes, then decreased in alpine lakes with decreasing amount of catchment vegetation and soil cover, and were the lowest in lakes situated in bare rocks. 4. The above pattern was further modified by lake water acidity. Concentrations of TP, organic carbon, and chlorophyll a were lower in alpine lakes with pH between 5 and 6 than in more or less acid alpine lakes. Zooplankton was absent in all alpine lakes with pH between 5 and 6. 5. Nitrate concentrations followed an inverse trend to TP; lowest values were in forest lakes, then increased with decreasing amount of catchment soils and vegetation. Within the lakes of the same type of catchment vegetation, nitrate concentrations were negatively correlated to TP. N‐saturation of catchment areas and lake primary production were dominant processes controlling nitrate levels in lakes and nitrate contribution to lake acidification.  相似文献   

4.
The Reeuwijk Lakes (The Netherlands) present a typical example of eutrophication in the lower Rhine catchment area. In 1986 restoration of these lakes started by reducing the external P-loading. Two lakes, Lake Elfhoeven and Lake Nieuwenbroek, differing in P-load and residence time were selected for monitoring water quality parameters before (1983–1985) and after (1986–1987) these restoration measures. Reduction of the external P-loading did not result in lower P-concentrations in both lakes. In contrast, P and N increased. This may have been caused by an increase in diffuse discharges. However, seasonal cycles of P and N point to a strong internal loading of nutrients. The concentrations of chlorophyll a and carotene decreased, indicating a lower phytoplankton biomass. However, as C-phycocyanine concentrations increased the relative abundance of cyanobacteria became higher. Seston concentrations and zooplankton densities did not change. Transparency in the lakes slightly decreased after P-reduction and is far too low for the development of any vegetation of submerged waterplants. The typical differences between both lakes remained after restoration measures. The inverse relationship between the concentrations of chlorophyll a and total phosphorus at the two sampled stations remained constant. The differences in phytoplankton composition and the zooplankton biomass give a plausible explanation for this inverse relationship, between the two stations. Restoring the lakes after four decades of P-loading can presumably, not simply be done by lowering the external P-load alone. Supplementary in-lake measures may accelerate the restoration process.  相似文献   

5.
黄土高原流域水沙变化研究进展   总被引:12,自引:8,他引:4  
人类活动和气候变化是影响流域水文过程的两大驱动因素,径流输沙是流域水文过程的总体反映,变化环境下径流输沙的变化规律与成因分析是水文学和全球变化研究的热点问题。黄土高原是我国水土流失最严重的地区。20世纪50年代以来,黄土高原地区开展了大规模的生态环境建设和水土流失综合治理,显著改变了流域土地利用和植被覆盖。下垫面条件改变与气候变化综合作用,使得流域水沙情势发生剧变。围绕黄土高原流域水沙变化的时空尺度特征与驱动机制,总结了径流输沙和水沙关系变化特征的研究结果,归纳了径流输沙变化的归因分析方法与人类活动和气候变化影响的贡献分割结果,探讨了气候变化、植被恢复、水土保持工程措施以及流域景观格局对水沙变化的影响机制。未来应加强流域水沙演变的时空尺度特征特别是水沙关系非线性特征的定量研究,阐明极端事件对水沙动态的影响与贡献;开展水沙变化影响机制的多要素综合解析,发展耦合地表覆被动态特征和气候变化的降雨-径流-输沙模型,揭示生态恢复与水沙演变过程互馈机制;开展未来气候变化、社会经济发展和生态建设工程情景下水沙动态的趋势预测,为黄土高原生态综合治理和水资源管理与黄河水沙调控提供策略建议。  相似文献   

6.
Riverine transport of organic carbon (OC) to the ocean is a significant component in the global carbon (C) cycle and the concentration of total organic carbon (TOC) in rivers and lakes is vital for ecosystem properties and water quality for human use. By use of a large dataset comprising chemical variables and detailed catchment information in ~1000 Norwegian pristine lakes covering a wide climatic range, we were able to predict TOC concentrations with high accuracy. We further predict, using a ‘space‐for‐time’ approach and a downscaled, moderate, climate change scenario, that northern, boreal regions likely will experience strong increases in OC export from catchments to surface waters. Median concentrations of OC in these lakes will increase by 65%, from the current median of 2.0–3.3 mg C L?1. This is a long‐term effect, primarily mediated by increased terrestrial vegetation cover in response to climate change. This increase OC will have severe impacts on food‐webs, productivity and human use. Given the robustness of the estimates and the general applicability of the parameters, we suggest that these findings would be relevant to boreal areas in general.  相似文献   

7.
Many northern lake‐rich regions are undergoing pronounced hydrological change, yet inadequate knowledge of the drivers of these landscape‐scale responses hampers our ability to predict future conditions. We address this challenge in the thermokarst landscape of Old Crow Flats (OCF) using a combination of remote sensing imagery and monitoring of stable isotope compositions of lake waters over three thaw seasons (2007–2009). Quantitative analysis confirmed that the hydrological behavior of lakes is strongly influenced by catchment vegetation and physiography. Catchments of snowmelt‐dominated lakes, typically located in southern peripheral areas of OCF, encompass high proportions of woodland/forest and tall shrub vegetation (mean percent land cover = ca. 60%). These land cover types effectively capture snow and generate abundant snowmelt runoff that offsets lake water evaporation. Rainfall‐dominated lakes that are not strongly influenced by evaporation are typically located in eastern and northern OCF where their catchments have higher proportions of dwarf shrub/herbaceous and sparse vegetation (ca. 45%), as well as surface water (ca. 20%). Evaporation‐dominated lakes, are located in the OCF interior where their catchments are distinguished by substantially higher lake area to catchment area ratios (LA/CA = ca. 29%) compared to low evaporation‐influenced rainfall‐dominated (ca. 10%) and snowmelt‐dominated (ca. 4%) lakes. Lakes whose catchments contain >75% combined dwarf shrub/herbaceous vegetation and surface water are most susceptible to evaporative lake‐level drawdown, especially following periods of low precipitation. Findings indicate that multiple hydrological trajectories are probable in response to climate‐driven changes in precipitation amount and seasonality, vegetation composition, and thermokarst processes. These will likely include a shift to greater snowmelt influence in catchments experiencing expansion of tall shrubs, greater influence from evaporation in catchments having higher proportions of surface water, and an increase in the rate of thermokarst lake expansion and probability of drainage. Local observations suggest that some of these changes are already underway.  相似文献   

8.
Floating vegetation cover over the ox-bow lake withstands against its sharp delineation. A good many spectral indices are successfully used for water body delineation. But how far these are applicable in vegetation-shaded ox-bow lakes is a research question. The study also aimed that if the existing indices are not satisfactory and how a new index could be endorsed for resolving the problem. The study additionally monitored the ox-bow lake and vegetation cover area from 1991 to 2021 based on Landsat satellite images.Normalized differences water index (NDWI), Modified NDWI (MNDWI), Re-modified NDWI (RmNDWI), and Normalized Difference Vegetation Index (NDVI) spectral indices were used for delineating ox-bow lakes and multiple accuracy test measures revealed that these are not highly satisfactory. Vegetation inclusive aggregated water index (ViAWI) was built by coupling mentioned spectral indices with the vegetation index and the ensemble map was found more accurate.Monitoring the ox-bow lake area clearly showed that these declined in the last 30 years irrespective of the historical drainage modification legacy of the major rivers to which the ox-bow lakes belonged. Aquatic vegetation cover within ox-bow lakes changed dynamically.The endorsed ViAWI would be a good approach for resolving wetland delineation shaded with floating vegetation and it could be used in other regional units worldwide. Quantitative information regarding ox-bow lake and vegetation cover within ox-bow lakes would be valuable data support for adopting ox-bow lake conservation and restoration planning.  相似文献   

9.
Odonate assemblages were compared between replicate sets of shallow lakes that had been created and acidified by open‐cast mining across a large area (2,451 ha) of southwest France (Arjuzanx, Landes); one set of lakes (n = 5) was experimentally restored by liming with calcium carbonate, whereas another group (n = 5) was left as untreated reference lakes. Both odonate adults and exuviae were sampled bimonthly during May–August 1998. Elevated turbidity and conductivity in limed lakes were the only physicochemical measures differing between restored and reference lakes, because deacidification occurred naturally, even in reference lakes during the 17 years after the onset of restoration. Restoration by liming can apparently lead to effects on lake turbidity that might be considered adverse. Twenty‐four and 19 odonate species occurred among adults and exuviae, respectively, but there were no significant differences in richness between restored and reference sites. However, significantly, more exuviae were collected from the reference sites (588 vs. 180), where exuvial diversity and rank abundance indicated more evenly structured assemblages than those in restored lakes. Ordination showed that adult assemblages differed significantly between restored and reference lakes, and varied highly significantly with lake turbidity. This effect occurred because a small group of generally scarce adults were characteristic of reference sites (Chalcolestes viridis, Lestes virens, Cordulia aenae, Leucorrhinia albifrons, and Sympetrum sanguineum). Exuviae of these same species were less abundant at restored sites, but exuvial assemblages overall did not discriminate between restored and reference lakes. We conclude that lake restoration by liming can reduce diversity and larval numbers among odonates and subtly affects adult assemblages. In this case study, adult assemblages discriminated best between the lake types involved in the experiment, but important additional information arose from exuvial abundance and structure. This study indicates that natural recovery processes after acidification in formerly open‐cast areas––rather than chemical intervention through liming––might lead to preferable conservation outcomes.  相似文献   

10.
11.
The regulation of surface water pCO2 was studied in a set of 33 unproductive boreal lakes of different humic content, situated along a latitudinal gradient (57°N to 64°N) in Sweden. The lakes were sampled four times during one year, and analyzed on a wide variety of water chemistry parameters. With only one exception, all lakes were supersaturated with CO2 with respect to the atmosphere at all sampling occasions. pCO2 was closely related to the DOC concentration in lakes, which in turn was mainly regulated by catchment characteristics. This pattern was similar along the latitudinal gradient and at different seasons of the year, indicating that it is valid for a variety of climatic conditions within the boreal forest zone. We suggest that landscape characteristics determine the accumulation and subsequent supply of allochthonous organic matter from boreal catchments to lakes, which in turn results in boreal lakes becoming net sources of atmospheric CO2.  相似文献   

12.
湿地植被多样性特征及其影响因素的调查分析是湿地植被保护与恢复策略制定的基础。借鉴生物多样性热点分析原理,在武汉市城市湖泊湿地植物多样性调查的基础上,研究了湖泊湿地的植被多样性特征,探讨了城市湖泊湿地植被分类保护与恢复对策。结果表明,武汉市湿地维管束植物的物种丰富度、植物多样性、优势度和均匀度指数在各湖泊间的变化趋势较为一致,但在空间变化幅度上存在一定差异。按照物种丰富度、多样性、优势度、均匀度、湿地植被群丛数目,以及典型湿地植物的物种所占比例、丰富度和优势度的差异,可将调查涉及的26个典型湖泊湿地分为原生植被湖泊、次生植被湖泊、人工植被湖泊和退化植被湖泊4类。原生植被湖泊应建立相对严格的湿地保护区,优先保护原有湿地植被。次生植被湖泊最多,城市发展区内的次生植被湖泊应建立30-100m的植被缓冲带,促进植被自然恢复和发育;而农业区的次生植被湖泊应引导和规范湖泊周围的农业生产模式,以减少人类活动干扰。人工植被湖泊应通过建立城市湿地公园,人工促进植被的近自然恢复。而退化植被湖泊则应尽快采用生态工程法促进湿地植被生境改善,并积极开展近自然湿地植被重建与恢复。  相似文献   

13.
Organic and inorganic carbon concentrations in lakes and the links to catchment and water quality were studied in variable landscapes using the Finnish Lake Survey data base including 874 randomly selected lakes sampled during autumn overturn. The median total organic carbon (TOC) in these boreal lakes was 7.8 mg l?1, the median total inorganic carbon (TIC) 1.6 mg l?1 and the median partial pressure of CO2 (pCO2) 900 μatm. When the data was divided into subgroups according to land use in the catchment, the proportion of TIC of the total carbon (TC) in lakes was highest (31%) in agricultural areas and lowest (10%) in peatland areas. Elevated TIC concentrations were associated with agricultural land in the catchment, whereas elevated TOC concentrations were observed in lakes with high peatland proportion in the catchment. Two contrasting important sources of CO2 in lakes were identified on the basis of statistical analysis of the data; weathering processes in the catchments and decomposition of organic matter. CO2 was also strongly associated with total nutrients TN and TP, implying the importance of quality of organic matter and availability of nutrients for the decomposition processes.  相似文献   

14.
Forty species of predaceous diving beetles (Coleoptera, Dytiscidae) were collected in sweepnet samples from 98 boreal lakes in northern Sweden. Samples from protected sites with vegetation had significantly more specimens and species than those from exposed sites without vegetation in the same lakes. No geographically based differences, e.g. latitudinal or in distance from the coast, were found. These gradients were 200 and 150 km long, respectively. Species' distribution in terms of occurence at number of sites was positively correlated with the mean abundance of the species. The relationship between species' abundance and body length was characterized by the lack of large, abundant species. Partial least square regressions on dytiscid abundance and species richness showed low predictive power of lake area, altitude and water chemistry. The seven environmental variables used explained at best 15.3 and 24.4% of the total variance in abundance and species richness, respectively. The results are compared to activity trap catches of dystiscids in lakes in an adjacent region. A majority of the species occured in both materials. However, species occuring in high proportion in one of the materials, were rare in the other material. The mean body length of the species caught more efficiently with traps was not larger than that of those overpresented in net sampling. Based on this study and the available literature data, the regional species pool of boreal lake dytiscids is estimated to 30–40 species. It is still an open question if lake assemblages are markedly poorer than those found in the development of vegetation, whereas the impact of water chemistry is small.  相似文献   

15.
Inland waters transport large amounts of dissolved organic matter (DOM) from terrestrial environments to the oceans, but DOM also reacts en route, with substantial water column losses by mineralization and sedimentation. For DOM transformations along the aquatic continuum, lakes play an important role as they retain waters in the landscape allowing for more time to alter DOM. We know DOM losses are significant at the global scale, yet little is known about how the reactivity of DOM varies across landscapes and climates. DOM reactivity is inherently linked to its chemical composition. We used fluorescence spectroscopy to explore DOM quality from 560 lakes distributed across Sweden and encompassed a wide climatic gradient typical of the boreal ecozone. Six fluorescence components were identified using parallel factor analysis (PARAFAC). The intensity and relative abundance of these components were analyzed in relation to lake chemistry, catchment, and climate characteristics. Land cover, particularly the percentage of water in the catchment, was a primary factor explaining variability in PARAFAC components. Likewise, lake water retention time influenced DOM quality. These results suggest that processes occurring in upstream water bodies, in addition to the lake itself, have a dominant influence on DOM quality. PARAFAC components with longer emission wavelengths, or red‐shifted components, were most reactive. In contrast, protein‐like components were most persistent within lakes. Generalized characteristics of PARAFAC components based on emission wavelength could ease future interpretation of fluorescence spectra. An important secondary influence on DOM quality was mean annual temperature, which ranged between ?6.2 and +7.5 °C. These results suggest that DOM reactivity depends more heavily on the duration of time taken to pass through the landscape, rather than temperature. Projected increases in runoff in the boreal region may force lake DOM toward a higher overall amount and proportion of humic‐like substances.  相似文献   

16.
1. The restoration of native, forested riparian habitats is a widely accepted method for improving degraded streams. Little is known, however, about how the width, extent and continuity of forested vegetation along stream networks affect stream ecosystems. 2. To increase the likelihood of achieving restoration goals, restoration practitioners require quantitative tools to guide the development of restoration strategies in different catchment settings. We present an empirically based model that establishes a relationship between a ‘stress’ imposed at different locations along a stream by the spatial pattern of land cover within catchments, and the response of biologically determined ecosystem characteristics to this stress. The model provides a spatially explicit, quantitative framework for predicting the effects of changes in catchment land cover composition and spatial configuration on specific characteristics of stream ecosystems. 3. We used geospatial datasets and biological data for attached algae and benthic macroinvertebrates in streams to estimate model parameters for 40 sites in 33 distinct catchments within the mid‐Atlantic Piedmont region of the eastern U.S. Model parameters were estimated using a genetic optimisation algorithm. R2 values for the resulting relationships between catchment land cover and biological characteristics of streams were substantially improved over R2 values for spatially aggregated regression models based on whole‐catchment land cover. 4. Using model parameters estimated for the mid‐Atlantic Piedmont, we show how the model can be used to guide restoration planning in a case study of a small catchment. The model predicts the quantitative change in biological characteristics of the stream, such as indices of species diversity and species composition, that would occur with the implementation of a hypothetical restoration project.  相似文献   

17.
The diversity and community structure of macrophyte vegetation was studied in 50 boreal lakes forming several upper reaches of lake chains around Lammi, southern Finland. Water chemical parameters and morphometry of the basins were included in a multivariate analysis. Floating-leaved vegetation was the dominant growth form, followed by emergent plants. In downstream lakes, the dominance of floating-leaved macrophytes declined, and emergent species increased in abundance. Species richness was highest in larger lakes, with a wider range of littoral habitats than smaller lakes. Electrical conductivity (range 18–151 mS cm−1, 25 °C) of the water correlated well with patterns in diversity among lakes, but this was not the case for nutrient concentrations. As a whole, morphometrical characteristics of lake basins showed better correlations with vegetation structure than any of the measured chemical parameters. The macrophyte vegetation of neighbouring lake chains differed considerably, depending on the surrounding landscape properties, water quality of the lakes and immigration history of plant species.  相似文献   

18.
The hydrology of the Loosdrecht lakes area   总被引:5,自引:5,他引:0  
  相似文献   

19.
The European Water Framework Directive aims to improve ecological status within river basins. This requires knowledge of responses of aquatic assemblages to recovery processes that occur after measures have been taken to reduce major stressors. A systematic literature review comparatively assesses recovery measures across the four major water categories. The main drivers of degradation stem primarily from human population growth and increases in land use and water use changes. These drivers and pressures are the same in all four water categories: rivers, lakes, transitional and coastal waters. Few studies provide evidence of how ecological knowledge might enhance restoration success. Other major bottlenecks are the lack of data, effects mostly occur only in short-term and at local scale, the organism group(s) selected to assess recovery does not always provide the most appropriate response, the time lags of recovery are highly variable, and most restoration projects incorporate restoration of abiotic conditions and do not include abiotic extremes and biological processes. Restoration ecology is just emerging as a field in aquatic ecology and is a site, time and organism group-specific activity. It is therefore difficult to generalise. Despite the many studies only few provide evidence of how ecological knowledge might enhance restoration success.  相似文献   

20.
滇西北高原闭合半闭合退化湿地的生态恢复效果   总被引:1,自引:0,他引:1  
杨倩  田昆  肖德荣  李隐  董瑜  杨扬 《应用生态学报》2012,23(6):1520-1526
选取滇西北高原典型退化湿地纳帕海,对比植被恢复前后入湖河流廊道、草甸(汇水过渡区)、湖滨带植物群落物种的组成、水质、土壤有机质和全氮含量的变化,分析流域完整尺度恢复实践的有效性.结果表明:研究区湿地植物在恢复初期由8科12属13种迅速增加至18科22属28种;地上生物量从318.56 g·m-2上升到507.68 g·m-2;湖滨及河流岸带植物群落恢复前后变化明显,耐污种逐渐减少或消失,出现了消失多年的沼泽植物黑三棱和水毛莨群落;土壤有机质和全氮含量分别由恢复前的28.85和0.79g·kg-1增加到50.26和1.45g·kg-1,水体中的TN、TP和COD含量较恢复前显著下降,去除率分别达到67.9%、79.2%和71.2%,水体透明度提高了179%,湿地生态系统结构和功能得到了改善和恢复.在高原闭合半闭合湿地区,采取植被恢复措施及其技术方法行之有效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号