首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyphenols and divalent metal ions present in the tissue may seriously affect the degradation of alginate during anaerobic digestion of brown seaweeds. Laminaria hyperborea stipes, harvested at 59 °N off the Norwegian coast in the autumn, were degraded at different concentrations of polyphenols in anaerobic batch reactors at 35 °C and pH 7. This was done by removing or adding the mechanically peeled outer phenolic layer of the algae, and using methanogenic and alginate degrading inocula already adapted to L. hyperborea degradation. Initial alginate released from the algal particles was affected by NaOH titrations because the Ca/Na-ratio was reduced. After a rapid consumption of the mannitol, alginate lyases were induced, and guluronate lyases showed the highest extracellular activity. Then the microbes digested 0.12–0.23 g Na-alginate L−1 h−1. Later the degradation rate of alginates declined almost to zero, and 13–50% of the alginate remained insoluble. The total solubilisation of alginates was apparently limited by both Ca-crosslinked guluronate residues and complexation with compounds such as polyphenols. The methane production had a lag phase that increased at higher amounts of soluble polyphenols, and the total fermentation probably also became product inhibited if soluble compounds such as acetate, ethanol and butyrate were accumulated. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

2.
The Ca-crosslinked alginate matrix of brown seaweeds may present a limiting factor when microbes decompose algal tissue. Ca-alginate gels made from Ascophyllum nodosum and Laminaria hyperborea stipe alginates were digested in aerated batch reactors at 35 °C and pH 7 using an alginate decomposing inoculum harvested during aerobic degradation of L. hyperborea stipe. The mineralisation of Ca-alginate gels was independent of the substrate source, with consumption rates of alginate similar to those of algal alginates in L. hyperborea stipe. Despite a high guluronate lyase activity, the fractional content of guluronate in the remaining Ca-alginate gels increased during digestion as observed earlier for algal tissue. Thus, the Ca-crosslinked guluronate residues were the most recalcitrant material in both gels and algal tissue.Since the access for enzymes to the Ca-crosslinked guluronate residues probably is restricted, ionic washout may represent an important factor for the degradation process. In total, the alginate in algal tissue and Ca-alginate gels behaved similarly during biodegradation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The alginate forms the major structural component of the cell wall and the intercellular matrix of the brown alga Ascophyllum nodosum. Successful biological degradation of A. nodosum would largely depend on the dissolution of the alginate, but reactive compounds in the alga such as polyphenols may also have toxic effects on the microbial population involved. Aerobic and anaerobic batch reactors, operated at 35°C and pH 7, were fed milled A. nodosum, nutrients and inocula adapted to seaweed degradation. The dominant factor for conversion of organic matter during anaerobic digestion was the inhibitory effect of the polyphenols on alginate lyases and methane production. Probably, the relative large fraction of high molecular weight polyphenols (>10 kDa) in this alga gave efficient binding of proteins during digestion. The anaerobic degradation was greatly stimulated when the polyphenols were fixed with low amounts of formaldehyde. An accumulated content of guluronate in the remaining alginate indicated that Ca-crosslinking also limited the guluronate lyase access to the polymer. In contrast, the aerobic digestion of alga gave no increase in the guluronate content of the residual alginate. Compared to anaerobic conditions, the phenols had a much lower influence on the hydrolytic rate of organic matter during aerobic conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
随着大型褐藻生产燃料乙醇以及褐藻寡糖重大药用价值的发现,褐藻胶裂解酶成为国内外多个领域的研究重点。文中对解藻酸弧菌上与褐藻胶降解相关的5个基因分别进行克隆表达,通过SDS-PAGE和酶活性定量测定,发现该基因簇中的4个基因有降解褐藻胶活性。对酶活最高的rAlgV3进行了诱导条件的优化、酶蛋白纯化及酶性质研究,发现优化诱导条件后重组酶rAlgV3的酶活由2.34×10~4 U/L上升为1.68×10~5 U/L,比优化前提高了7.3倍;对酶性质进行表征发现该酶在4–70℃均有活性,最适反应温度为40℃,在4–20℃酶相对稳定;该酶在pH 6.5-9.0环境下均有较高的酶活,最适pH为8.0;pH稳定性好,在pH 4.5–9.5环境下可以稳定存在;适量的NaCl浓度和Fe~(2+)、Fe~(3+)等离子具有促进酶活的作用,SDS和Cu~(2+)离子可明显抑制酶活力。对该酶的底物特性的研究发现,该酶不仅可以降解褐藻胶中的Poly-M片段,也能降解Poly-G片段,具有广泛底物特性;其降解海藻酸钠主要释放二糖和三糖,是一种内切酶。该酶对于第三代燃料乙醇的发展及褐藻寡糖的生产具有重要作用。  相似文献   

5.
A bacterium possessing alginate-degrading activity was isolated from marine brown seaweed soup liquefied by salted and fermented anchovy. The isolated strain was designated as Sphingomonas sp. MJ-3 based on the analyses of 16S ribosomal DNA sequences, 16S-23S internal transcribed spacer region sequences, biochemical characteristics, and cellular fatty acid composition. A novel alginate lyase gene was cloned from genomic DNA library and then expressed in Escherichia coli. When the deduced amino acid sequence was compared with the sequences on the databases, interestingly, the cloned gene product was predicted to consist of AlgL (alginate lyase L)-like and heparinase-like protein domain. The MJ-3 alginate lyase gene shared below 27.0% sequence identity with exolytic alginate lyase of Sphingomonas sp. A1. The optimal pH and temperature for the recombinant MJ-3 alginate lyase were 6.5 and 50°C, respectively. The final degradation products of alginate oligosaccharides were analyzed by electrospray ionization mass spectrometry and proved to be alginate monosaccharides. Based on the results, the recombinant alginate lyase from Sphingomonas sp. MJ-3 is regarded as an oligoalginate lyase that can degrade oligoalginate and alginate into alginate monosaccharides.  相似文献   

6.
An alginate lyase with high specific enzyme activity was purified from Vibrio sp. YKW-34, which was newly isolated from turban shell gut. The alginate lyase was purified by in order of ion exchange, hydrophobic and gel filtration chromatographies to homogeneity with a recovery of 7% and a fold of 25. This alginate lyase was composed of a single polypeptide chain with molecular mass of 60 kDa and isoelectric point of 5.5–5.7. The optimal pH and temperature for alginate lyase activity were pH 7.0 and 40 °C, respectively. The alginate lyase was stable over pH 7.0–10.0 and at temperature below 50 °C. The alginate lyase had substrate specificity for both poly-guluronate and poly-mannuronate units. The kcat/Km value for alginate (heterotype) was 1.7 × 106 s−1 M−1. The enzyme activity was completely lost by dialysis and restored by addition of Na+ or K+. The optimal activity exhibited in 0.1 M of Na+ or K+. This enzyme was resistant to denaturing reagents (SDS and urea), reducing reagents (β-mercaptoethanol and DTT) and chelating reagents (EGTA and EDTA).  相似文献   

7.
The marine alginate lyase from Streptomyces sp. ALG-5, which specifically degrades poly-G block of alginate, was functionally expressed as a His-tagged form with an Escherichia coli expression system. The recombinant alginate lyase expressed with pColdI at 15 °C exhibited the highest alginate-degrading activity. The recombinant alginate lyase was efficiently immobilized onto two types of magnetic nanoparticles, superparamagnetic iron oxide nanoparticle, and hybrid magnetic silica nanoparticle, based on the affinity between His-tag and Ni2+ that displayed on the surfaces of nanoparticles. An alginate oligosaccharide mixture consisting of dimer and trimer was prepared by the immobilized alginate lyase. The immobilized enzymes were re-used repeatedly more than 10 times after magnetic separation.  相似文献   

8.
A search for enzymes involved in the degradation of polyanionic polysaccharides (fucoidans and alginic acid) was conducted among bacterial epiphytes of the brown alga Sargassum polycystum that grows in the territorial waters of the Socialist Republic of Vietnam. Two resistant bacterial strains, F10 and F14, have been isolated from the algal microflora that degrade the thallus of the alga under laboratory conditions. These bacterial strains differed in the morphological, physiological, and biochemical characteristics and in the composition of enzymes. The strains were studied for the ability to synthesize intracellular oligo-and polysaccharide hydrolases and alginate lyases. The optimal conditions for the growth of bacterial strain F14 and the biosynthesis of fucoidanase and polymannuronate-specific alginate lyase were determined. The partially purified alginate lyase was stable at a temperature up to 40°C and had an optimal pH 6.0 and an optimal temperature 35°C.  相似文献   

9.
A study of alginate lyase was carried out to determine if this enzyme could be used to remove alginate present in the core of alginate/poly-L-lysine (AG/PLL) microcapsules in order to maximize cell growth and colonization. A complete kinetic study was undertaken, which indicated an optimal activity of the enzyme at pH 7-8, 50 degrees C, in the presence of Ca2+. The buffer, not the ionic strength, influenced the alginate degradation rate. Alginate lyase was also shown to be active on gelled forms of alginate, as well as on the AG/PLL complex constituting the membrane of microcapsules. Batch cultures of CHO cells in the presence of alginate showed a decrease of the growth rate by a factor of 2, although the main metabolic flux rates were not modified. The addition of alginate lyase to cell culture medium increased the doubling time 5-7-fold and decreased the protein production rate, although cell viability was not affected. The addition of enzyme to medium containing alginate did not improve growth conditions. This suggests that alginate lyase is probably not suitable for hydrolysis of microcapsules in the presence of cells, in order to achieve high cell density and high productivity. However, the high activity may be useful for releasing cells from alginate beads or AG/PLL microcapsules.  相似文献   

10.
A metagenomic fosmid library was constructed using a genomic DNA mixture extracted from the gut microflora of abalone. The library gave an alginate lyase positive clone (AlyDW) harboring a 31.7-kbp insert. The AlyDW insert consisted of 22 open reading frames (ORFs). The deduced amino acid sequences of ORFs 11–13 were similar to those of known alginate lyase genes, which are found adjacent in the genome of Klebsiella pneumoniae subsp. aerogenes, Vibrio splendidus, and Vibrio sp. belonging to the phylum Gammaproteobacteria. Among the three recombinant proteins expressed from the three ORFs, alginate lyase activity was only observed in the recombinant protein (AlyDW11) coded by ORF 11. The expressed protein (AlyDW11) had the highest alginate lyase activity at pH 7.0 and 45°C in the presence of 1 mM AgNO3. The alginate lyase activity of ORF 11 was confirmed to be endolytic by thin-layer chromatography. AlyDW11 preferred poly(β-d-mannuronate) as a substrate over poly(α-l-guluronate). AlyDW11 contained three highly conserved regions, RSEL, QIH, and YFKAGVYNQ, which may act to stabilize the three-dimensional conformation and function of the alginate lyase.  相似文献   

11.
Alginate is a polysaccharide produced by certain seaweeds and bacteria that consists of mannuronic acid and guluronic acid residues. Seaweed alginate is used in food and industrial chemical processes, while the biosynthesis of bacterial alginate is associated with pathogenic Pseudomonas aeruginosa. Alginate lyases cleave this polysaccharide into short oligo-uronates and thus have the potential to be utilized for both industrial and medicinal applications. An alginate lyase gene, algMsp, from Microbulbifer sp. 6532A, was synthesized as an E.coli codon-optimized clone. The resulting 37 kDa recombinant protein, AlgMsp, was expressed, purified and characterized. The alginate lyase displayed highest activity at pH 8 and 0.2 M NaCl. Activity of the alginate lyase was greatest at 50°C; however the enzyme was not stable over time when incubated at 50°C. The alginate lyase was still highly active at 25°C and displayed little or no loss of activity after 24 hours at 25°C. The activity of AlgMsp was not dependent on the presence of divalent cations. Comparing activity of the lyase against polymannuronic acid and polyguluronic acid substrates showed a higher turnover rate for polymannuronic acid. However, AlgMSP exhibited greater catalytic efficiency with the polyguluronic acid substrate. Prolonged AlgMsp-mediated degradation of alginate produced dimer, trimer, tetramer, and pentamer oligo-uronates.  相似文献   

12.
Role of alginate lyase in cell detachment of Pseudomonas aeruginosa.   总被引:15,自引:0,他引:15       下载免费PDF全文
The exopolysaccharide alginate of Pseudomonas aeruginosa was shown to be important in determining the degree of cell detachment from an agar surface. Nonmucoid strain 8822 gave rise to 50-fold more sloughed cells than mucoid strains 8821 and 8830. Alginate anchors the bacteria to the agar surface, thereby influencing the extent of detachment. The role of the P. aeruginosa alginate lyase in the process of cell sloughing was investigated. Increased expression of the alginate lyase in mucoid strain 8830 led to alginate degradation and increased cell detachment. Similar effects were seen both when the alginate lyase was induced at the initial stage of cell inoculation and when it was induced at a later stage of growth. It appears that high-molecular-weight alginate polymers are required to efficiently retain the bacteria within the growth film. When expressed from a regulated promoter, the alginate lyase can induce enhanced sloughing of cells because of degradation of the alginate. This suggests a possible role for the lyase in the development of bacterial growth films.  相似文献   

13.
Alliinase (alkylsulphenate lyase, EC 4.4.1.4), which catalyses the production of allicin, was immobilized in alginate microparticles. Addition of pyridoxal 5′-phosphate to the microparticles enhanced alliinase activity. Encapsulated alliinase were significantly higher (30 and 22%, respectively) than those of non-encapsulated alliinase at 60°C and at pH 2. Therefore, microencapsulation of alliinase with alginate can offer an effective way of sustaining enzyme activity during oral administration and passage through the stomach.  相似文献   

14.
[背景]褐藻胶裂解酶种类丰富、降解机制多样,是高效环保降解褐藻胶、制备褐藻寡糖的工具酶,成为褐藻植物高值化开发利用的研究热点.[目的]从海泥中筛选获得褐藻胶裂解酶高效产酶菌株,确定菌株发酵产酶最优条件,鉴定和分析酶降解产物,进而解析该酶的降解特性.[方法]以褐藻胶为唯一碳源,从海带养殖场附近海泥中筛选菌株,通过形态学观...  相似文献   

15.
The application of marine resources, instead of fossil fuels, for biomass production is important for building a sustainable society. Seaweed is valuable as a source of marine biomass for producing biofuels such as ethanol, and can be used in various fields. Alginate is an anionic polysaccharide that forms the main component of brown algae. Various alginate lyases (e.g. exo- and endo-types and oligoalginate lyase) are generally used to degrade alginate. We herein describe a novel alginate lyase, AlgC-PL7, which belongs to the polysaccharide lyase 7 family. AlgC-PL7 was isolated from the halophilic Gram-negative bacterium Cobetia sp. NAP1 collected from the brown algae Padina arborescens Holmes. The optimal temperature and pH for AlgC-PL7 activity were 45 °C and 8, respectively. Additionally, AlgC-PL7 was thermostable and salt-tolerant, exhibited broad substrate specificity, and degraded alginate into monosaccharides. Therefore, AlgC-PL7 is a promising enzyme for the production of biofuels.  相似文献   

16.
The alyPEEC gene encoding alginate lyase from marine bacterium Pseudoalteromonas elyakovii IAM 14594 was subcloned into pBAD24 with arabinose promoter and sequenced, and overexpressed in TOP10 strain of E. coli after arabinose induction. Expression levels of alyPEEC gene in E. coli cells were over 39.6-fold higher than those in P. elyakovii IAM 14594 cells. The molecular mass of purified alginate lyase from the engineered E. coli cells was estimated to be 32.0 kDa. Optimum pH and temperature of the alginate lyase activity were 7.0 and 30 °C, respectively. The enzyme was unstable on heating and in acidic and alkaline solution. The enzyme activity was stimulated by the MgCl2, NaCl, KCl, CaCl2, BaCl2 and MnCl2, but was inhibited by the addition of 1.0 mM of EGTA, EDTA, SDS, ZnSO4, AgNO3, and CoCl2. All the alginate, polyM and polyG could be converted into oligosaccharides with more than tetrasaccharides by the purified recombinant alginate lyase, suggesting that the recombinant alginate lyase produced by the engineered E. coli has highly potential application in seaweed genetics, food and pharmaceutical industries.  相似文献   

17.
Extracellular alginate lyase was purified from the culture supernatant of Corynebacterium sp. isolated from the sewage of a sea tangle processing factory in order to elucidate the structure—function relationship of alginate lyase. The electrophoretically homogeneous enzyme was shown to have a molecular mass of 27 kDa by sodium dodecyl sulfate (SDS)—polyacrylamide gel electrophoresis (PAGE) and by gel filtration, with an isoelectric point of 7.3. The molecular mass from amino acid analysis was 28.644 kDa. The optimal pH and temperature for the enzyme reaction were around 7.0 and 55°C, respectively. Metal compounds such as MnCl2 and NiCl2 increased the enzyme activity. The enzyme was identified as the endolytic poly(α-L-guluronate)lyase, which was active on poly(α-L-1,4-guluronate) and caused a rapid decrease in the viscosity of alginate solution. Measurement of the far-UV circular dichroic spectrum of the enzyme molecule gave a spectrum with a deep trough at 215nm accompanied by a shallow one at around 237 nm, and with a high peak at 197 nm and a much lower one at 230 nm. This spectrum was most likely to be that of the β-form of the enzyme molecule and resembled poly(β-D-mannuronate)lyase from Turbo cornutus (wreath shell) and poly(α-L-guluronate)lyase from Vibrio sp. (marine bacterium). The near-UV circular dichroic spectrum was characteristic for aromatic amino acid residues. In the presence of 6 M urea, these spectra changed drastically in the near-UV and a little in the far-UV with the disappearance of the enzyme activity. Removal of the denaturant in the enzyme solution by dialysis restored both the activity and inherent circular dichroic spectra. The β-sheets observed in alginate lyases as the major ordered structure seem to be a common conformation for the lyases.  相似文献   

18.
An alginate lyase with high specific enzyme activity was purified from Vibrio sp. YKW-34, which was newly isolated from turban shell gut. The alginate lyase was purified by in order of ion exchange, hydrophobic and gel filtration chromatographies to homogeneity with a recovery of 7% and a fold of 25. This alginate lyase was composed of a single polypeptide chain with molecular mass of 60 kDa and isoelectric point of 5.5–5.7. The optimal pH and temperature for alginate lyase activity were pH 7.0 and 40 °C, respectively. The alginate lyase was stable over pH 7.0–10.0 and at temperature below 50 °C. The alginate lyase had substrate specificity for both poly-guluronate and poly-mannuronate units. The kcat/Km value for alginate (heterotype) was 1.7 × 106 s−1 M−1. The enzyme activity was completely lost by dialysis and restored by addition of Na+ or K+. The optimal activity exhibited in 0.1 M of Na+ or K+. This enzyme was resistant to denaturing reagents (SDS and urea), reducing reagents (β-mercaptoethanol and DTT) and chelating reagents (EGTA and EDTA).  相似文献   

19.
Alginate lyase is a promising biocatalyst because of its application in saccharification of alginate for the production of biochemicals and renewable biofuels. This study described the isolation of a new alginate metabolizing bacterium, Flavobacterium sp. S20, from sludge samples and the characterization of its alginate lyase Alg2A. The alginate lyase gene, alg2A, was obtained by constructing and screening the genomic library of the strain S20 and overexpressed in Escherichia coli. Substrate specificity assays indicated Alg2A preferred poly-α-l-guluronate as a substrate over poly-β-d-mannuronate. In the saccharification process of a high content (10 %, w/v) of sodium alginate, the recombinant alginate lyase Alg2A yielded 152 of mM the reducing sugars after 69 h of reaction, and the amounts of oligosaccharides with a different degree of polymerization (DP) generated by Alg2A gradually accumulated without significant variation in the distribution of oligosaccharide compositions. These results indicated that Alg2A possessed high enzymatic capability for saccharifying the alginate, which could be used in saccharifying the alginate biomass prior to the main fermentation process for biofuels. In addition, Alg2A had a different endolytic reaction mode from both the two commercial alginate lyases and other alginate lyases from polysaccharide lyase family 7 owing to high yields of penta-, hex-, and hepta-saccharides in the hydrolysis products of Alg2A. Thus, Alg2A could be a good tool for the large-scale preparation of alginate oligosaccharides with high DP.  相似文献   

20.
Bacteria having alginate lyase activity were screened by growing cells from various sources in a medium containing alginate as a carbon source. Among the various samples tested, the culture enriched with paddy-field bacteria showed the highest alginate lyase activity, and contained three kinds of bacteria. They were purified and identified to be Flavobacterium, Alcaligenes and Bacillus species. The alginate lyase activity in these strains was low when they were grown separately. The highest alginate lyase activity was obtained when these strains were cultured all together in the same medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号