首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KEGG: kyoto encyclopedia of genes and genomes   总被引:85,自引:3,他引:82       下载免费PDF全文
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).  相似文献   

2.
The genomes of nonhuman primates have recently become highly visible candidates for full genome analysis, as they provide powerful models of human disease and a better understanding of the evolution of the human genome. We describe the creation of a 5000 rad radiation hybrid (RH) mapping panel for the rhesus macaque. Duplicate genotypes of 84 microsatellite and coding gene sequence tagged sites from six macaque chromosomes produced an estimated whole genome retention frequency of 0.33. To test the mapping ability of the panel, we constructed RH maps for macaque chromosomes 7 and 9 and compared them to orthologous locus orders in existing human and baboon maps derived from different methodologies. Concordant marker order between all three species maps suggests that the current panel represents a powerful mapping resource for generating high-density comparative maps of the rhesus macaque and other species genomes.  相似文献   

3.
Comprehensive genetic maps are now available for all of the world's important crop species. Data show a remarkable conservation of order of markers over family-wide taxonomic groupings and illuminate species relationships and mechanisms of genome evolution. Comparison of genetic and physical maps has revealed differences in genetic distance throughout genomes with implications for genome organization, gene isolation and transformation.  相似文献   

4.
The structural gene coding for both polypeptides I and II which are the two major polypeptides of the Hepatitis B surface antigen, is found to be localized on the viral genome. This gene, referred to as gene S, is located in the partially single stranded region. It maps between positions 73.6 and 95.1% of the genome length. It is composed of 678 nucleotides, which correspond to a theoretical polypeptide of 25,422 molecular weight.  相似文献   

5.
6.
普通菜豆是重要的食用豆类之一,在世界各大洲普遍种植。近年来,普通菜豆在遗传图谱构建、新标记开发与利用、抗性基因定位以及比较基因组学等方面取得了很大进展。遗传连锁图谱的构建是基因定位与克隆的基础,是遗传研究中的重要内容;利用分子连锁图谱鉴定、标记和定位抗病基因将在种质改良和分子标记辅助育种方面发挥重要作用。豆科植物比较基因组学的研究成果为菜豆遗传连锁图谱的发展提供了新的思路。本文从普通菜豆遗传连锁图谱的获得、普通菜豆与大豆同线性比较以及抗炭疽病基因定位等方面进行了综述,以期为普通菜豆遗传改良和抗病育种提供参考。 关键词:普通菜豆;遗传连锁图;同线性比较;抗菜豆炭疽病  相似文献   

7.
8.
The protein-coding capacity of the mouse mammary tumor virus genome has been examined by in vitro translation of genome length and polyadenylated subgenomic fragments of viral RNA. Intact genome RNA of about 35S programmed synthesis of the Pr77gag, Pr110gag and Pr160gag/pol precursors seen in infected cells in vivo. Polyadenylated RNA fragments of 18 to 28S encoded products whose tryptic peptide maps resembled those of the nonglycosylated precursor to the envelope glycoproteins, confirming the gene order 5'-gag-pol-env-3'. Translation of polyadenylated RNA fragments smaller than 18S yielded a series of related proteins whose peptide maps bore no resemblance to any of the virion structural proteins. Thus, a region of the mouse mammary tumor virus genome distal to the env gene appears to have an open reading frame sufficient to encode at least 36,000 daltons of protein as of yet unknown function.  相似文献   

9.
We have compared physical and genetic maps of the region around the legJ gene in pea. In this vicinity there are four B-type legumin genes, arranged as two close pairs. The detection of a recombination event within this gene cluster allows the orientation of this group of genes within the surrounding linkage group to be determined. The relationship between physical and genetic distances in this region is discussed, as are the implications of this for relating physical and genetic maps elsewhere in the pea genome.  相似文献   

10.
Wheat is an allopolyploid containing three distinct but genetically related (homoeologous) genomes, A, B and D. Because of polyploid inheritance and large genome size (16×1012 bp), the wheat genome is thought to be intractable to map-based cloning of agronomic and other genes of interest. We propose a targeted geneti mapping strategy that combines linkage and physical mapping and may facilitate map-based cloning. High-density linkage maps are either generated in wheat or in diploid Triticum tauschii, the donor of the D genome to wheat. Molecular marker-based chromosome maps are constructed, using an array of deletion lines in wheat. The conventional genetic linkage maps are aligned with chromosome maps to construct cytogenetic ladder maps (CLMs). The CLMs allow region-specific mapping and convert genetic distances into physical distances. The information from CLMs suggests that many genes in wheat are present in clusters that are highly recombiogenic, small, and may be amenable to cloning by chromosome walking. Therefore, the effective genome size of wheat is relatively small in comparison to the whole genome. The utility of using the smaller genome of rice for mapping and homologous gene cloning is discussed.  相似文献   

11.
The dog genome map and its use in mammalian comparative genomics   总被引:4,自引:0,他引:4  
The dog genome organization was extensively studied in the last ten years. The most important achievements are the well-developed marker genome maps, including over 3200 marker loci, and a survey of the DNA genome sequence. This knowledge, along with the most advanced map of the human genome, turned out to be very useful in comparative genomic studies. On the one hand, it has promoted the development of marker genome maps of other species of the family Canidae (red fox, arctic fox, Chinese raccoon dog) as well as studies on the evolution of their karyotype. But the most important approach is the comparative analysis of human and canine hereditary diseases. At present, causative gene mutations are known for 30 canine hereditary diseases. A majority of them have human counterparts with similar clinical and molecular features. Studies on identification of genes having a major impact on some multifactorial diseases (hip dysplasia, epilepsy) and cancers (multifocal renal cystadenocarcinoma and nodular dermatofibrosis) are advanced. Very promising are the results of gene therapy for certain canine monogenic diseases (haemophilia, hereditary retinal dystrophy, mucopolysaccharidosis), which have human equivalents. The above-mentioned examples prove a very important model role of the dog in studies of human genetic diseases. On the other hand, the identification of gene mutations responsible for hereditary diseases has a substantial impact on breeding strategy in the dog.  相似文献   

12.
The use of DNA sequence-based comparative genomics for evolutionary studies and for transferring information from model species to related large-genome species has revolutionized molecular genetics and breeding strategies for improving those crops. Comparative sequence analysis methods can be used to cross-reference genes between species maps, enhance the resolution of comparative maps, study patterns of gene evolution, identify conserved regions of the genomes, and facilitate interspecies gene cloning. In this study, 5,780 Triticeae ESTs that have been physically mapped using wheat (Triticum aestivum L.) deletion lines and segregating populations were compared using NCBI BLASTN to the first draft of the public rice (Oryza sativa L.) genome sequence data from 3,280 ordered BAC/PAC clones. A rice genome view of the homoeologous wheat genome locations based on sequence analysis shows general similarity to the previously published comparative maps based on Southern analysis of RFLP. For most rice chromosomes there is a preponderance of wheat genes from one or two wheat chromosomes. The physical locations of non-conserved regions were not consistent across rice chromosomes. Some wheat ESTs with multiple wheat genome locations are associated with the non-conserved regions of similarity between rice and wheat. The inverse view, showing the relationship between the wheat deletion map and rice genomic sequence, revealed the breakdown of gene content and order at the resolution conferred by the physical chromosome deletions in the wheat genome. An average of 35% of the putative single copy genes that were mapped to the most conserved bins matched rice chromosomes other than the one that was most similar. This suggests that there has been an abundance of rearrangements, insertions, deletions, and duplications eroding the wheat-rice genome relationship that may complicate the use of rice as a model for cross-species transfer of information in non-conserved regions.  相似文献   

13.
14.
Zhdanova NS 《Genetika》2002,38(5):581-594
Genome mapping by means of radiation-induced interspecific cell hybrids is a direct way to localize both high- and low-polymorphic nucleotide sequences, including gene sequences, on animal chromosomes. Using radiation hybrid panels either individual chromosomes and loci or entire genome can be mapped. This efficient approach makes it possible to reach high resolution of markers (up to 100 bp) as well as unify the mapping language. Due to electronic means of communication, the same experimental material can be used in numerous laboratories to provide high-resolution extended genomic maps saturated with markers. Radiation hybrid mapping is a powerful tool for analysis of complex genome structure. Using radiation hybrid maps permitted verification of regions of chromosome homeology in various species and detection of regions with conserved sequence and conserved gene order. Identification of these regions is extremely important for understanding evolution of species karyotypes and for making use of positional cloning to isolate genes responsible for commercial traits as well as genes involved in hereditary human diseases.  相似文献   

15.
FlyBase (http://flybase.bio.indiana.edu/) provides an integrated view of the fundamental genomic and genetic data on the major genetic model Drosophila melanogaster and related species. FlyBase has primary responsibility for the continual reannotation of the D. melanogaster genome. The ultimate goal of the reannotation effort is to decorate the euchromatic sequence of the genome with as much biological information as is available from the community and from the major genome project centers. A complete revision of the annotations of the now-finished euchromatic genomic sequence has been completed. There are many points of entry to the genome within FlyBase, most notably through maps, gene products and ontologies, structured phenotypic and gene expression data, and anatomy.  相似文献   

16.
As PCR methods have improved over the last 15 years, there has been an upsurge in the number of new DNA marker tools, which has allowed the generation of high-density molecular maps for all the key Brassica crop types. Biotechnology and molecular plant breeding have emerged as a significant tool for molecular understanding that led to a significant crop improvement in the Brassica napus species. Brassica napus possess a very complicated polyploidy-based genomics. The quantitative trait locus (QTL) is not sufficient to develop effective markers for trait introgression. In the coming years, the molecular marker techniques will be more effective to determine the whole genome impairing desired traits. Available genetic markers using the single-nucleotide sequence (SNP) technique and high-throughput sequencing are effective in determining the maps and genome polymorphisms amongst candidate genes and allele interactions. High-throughput sequencing and gene mapping techniques are involved in discovering new alleles and gene pairs, serving as a bridge between the gene map and genome evaluation. The decreasing cost for DNA sequencing will help in discovering full genome sequences with less resources and time. This review describes (1) the current use of integrated approaches, such as molecular marker technologies, to determine genome arrangements and interspecific outcomes combined with cost-effective genomes to increase the efficiency in prognostic breeding efforts. (2) It also focused on functional genomics, proteomics and field-based breeding practices to achieve insight into the genetics underlying both simple and complex traits in canola.  相似文献   

17.
Clones of cDNAs have several practical advantages as start points for making physical maps of genomes: they are mainly single copy; they expand the map because of the introns in the genomic version of the gene; and they are conserved between species. They also address biologically important regions of the genome. Sequence information helps to identify new gene functions.  相似文献   

18.
The small genome of sorghum (Sorghum bicolor L. Moench.) provides an important template for study of closely related large-genome crops such as maize (Zea mays) and sugarcane (Saccharum spp.), and is a logical complement to distantly related rice (Oryza sativa) as a "grass genome model." Using a high-density RFLP map as a framework, a robust physical map of sorghum is being assembled by integrating hybridization and fingerprint data with comparative data from related taxa such as rice and using new methods to resolve genomic duplications into locus-specific groups. By taking advantage of allelic variation revealed by heterologous probes, the positions of corresponding loci on the wheat (Triticum aestivum), rice, maize, sugarcane, and Arabidopsis genomes are being interpolated on the sorghum physical map. Bacterial artificial chromosomes for the small genome of rice are shown to close several gaps in the sorghum contigs; the emerging rice physical map and assembled sequence will further accelerate progress. An important motivation for developing genomic tools is to relate molecular level variation to phenotypic diversity. "Diversity maps," which depict the levels and patterns of variation in different gene pools, shed light on relationships of allelic diversity with chromosome organization, and suggest possible locations of genomic regions that are under selection due to major gene effects (some of which may be revealed by quantitative trait locus mapping). Both physical maps and diversity maps suggest interesting features that may be integrally related to the chromosomal context of DNA-progress in cytology promises to provide a means to elucidate such relationships. We seek to provide a detailed picture of the structure, function, and evolution of the genome of sorghum and its relatives, together with molecular tools such as locus-specific sequence-tagged site DNA markers and bacterial artificial chromosome contigs that will have enduring value for many aspects of genome analysis.  相似文献   

19.
Effective utilization of the domestic cat as an animal model for hereditary and infectious disease requires the development and implementation of high quality gene maps incorporating microsatellites and conserved coding gene markers. Previous feline linkage and radiation hybrid maps have lacked sufficient microsatellite coverage on all chromosomes to make effective use of full genome scans. Here we report the isolation and genomic mapping of 304 novel polymorphic repeat loci in the feline genome. The new loci were mapped in the domestic cat radiation hybrid panel using an automated fluorescent TAQ-Man based assay. The addition of these 304 microsatellites brings the total number of microsatellites mapped in the feline genome to 580, and the total number of loci placed onto the RH map to 1,126. Microsatellites now span every autosome with an average spacing of roughly one polymorphic STR every five centimorgans, and full genome coverage of one marker every 2.7 megabases. These loci now provide a useful tool for undertaking full-genome scans to identify genes associated with phenotypes of interest, such as those relating to hereditary disease, coat color, patterning and morphology. These resources can also be extended to the remaining 36 species of the cat family for population genetic and evolutionary genomic analyses.  相似文献   

20.
The comparative mapping and sequencing of vertebrate genomes is now a key priority for the Human Genome Project. In addition to finishing the human genome sequence and generating a `working draft' of the mouse genome sequence, significant attention is rapidly turning to the analysis of other model organisms, such as the laboratory rat (Rattus norvegicus). As a complement to genome-wide mapping and sequencing efforts, it is often important to generate detailed maps and sequence data for specific regions of interest. Using an adaptation of our previously described approach for constructing mouse comparative and physical maps, we have established a general strategy for targeted mapping of the rat genome. Specifically, we constructed a framework comparative map of human Chromosome (Chr) 7 and the orthologous regions of the rat genome, as well as two large (>1-Mb) P1-derived artificial chromosome (PAC)-based physical maps. Generation of these physical maps involved the use of mouse-derived probes that cross-hybridized with rat PAC clones. The first PAC map encompasses the cystic fibrosis transmembrane conductance regulator gene (Cftr), while the second map allows a three-species comparison of a genomic region containing intra- and inter-chromosomal evolutionary rearrangements. The studies reported here further demonstrate that cross-species hybridization between related animals, such as rat and mouse, can be readily used for the targeted construction of clone-based physical maps, thereby accelerating the analysis of biologically interesting regions of vertebrate genomes. Received: 5 December 2000 / Accepted: 27 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号