首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
By using lipase PS-30 as catalyst, the kinetic resolution of a series of racemic propargylic alcohols has been achieved via stereoselective acylation. The value of kinetic enantiomeric ratio (E) reached up to 139. Substituent effect is briefly discussed.  相似文献   

2.
Candida rugosa lipase-catalyzed esterification of ibuprofen with 1-propanol was conducted in seven ionic liquids and the results were compared with those in isooctane. Although the enzyme showed comparable or higher activity in some ionic liquids compared to that in isooctane, only in the case of [BMIM]PF6 was the enantioselectivity (E = 24.1) almost twice that (E = 13.0) of isooctane. In another six ionic liquids the enzyme enantioselectivity was much poorer (E = 1.1-6.4). At the same conversion of 30%, E of [BMIM]PF6 is more than triple that of isooctane. The lipase stability in [BMIM]PF6 was improved by 25% of that in isooctane. It was concluded that [BMIM]PF6 could be applied to substitute the conventional organic solvent (isooctane) in the esterification of ibuprofen.  相似文献   

3.
Four halogenated cyclopropane derivatives with a side chain containing a primary (1 and 2) or secondary (3 and 4) alcohol moiety were subject to kinetic resolution catalyzed by lipases. Two of them containing secondary alcohol groups gave excellent results with Candida antarctica lipase B with E-values around 1000. Two enantiopure alcohols and two enantiopure butanoates are described: (1S,1S)-1-(2′,2′-dichloro-3′,3′-dimethylcyclopropyl) ethanol (3), the corresponding (1R,1R)-butanoate (3b) and (1S,1S)-1-(1′-methyl-2′,2′-dibromocyclopropyl) ethanol (4) and the corresponding (1R,1R)-butanoate (4b).  相似文献   

4.
A new asymmetric transesterification of secondary alcohols catalyzed by feruloyl esterase from Humicola insolens has been found. Although alcohols are not the natural substrates for this enzyme, a high R enantioselectivity was observed. Stereochemical studies showed that variations in substrate structure lead to strong variations in enantioselectivity. The highest enantioselectivities are obtained when the beta-carbon of the secondary alcohol is tertiary or quaternary.  相似文献   

5.
The lipase from wheat germ was used for the kinetic resolution of secondary alcohols. It has the opposite enantioselectivity against the Kazlauskas rule and acts as an anti-Kazlauskas catalyst. The effect of initial water activity, organic solvent, acyl donor and temperature were investigated. Wheat germ lipase had a high activity and enantioselectivity only in n-hexane with a high initial water activity (αw = 0.97), especially with 1-phenylethanol (C 32%, E > 200). Its performance changed little with the chain length of acyl donor and temperature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The Carica papaya lipase-catalyzed acylation of benzylcarbinols with vinyl hexanoate proceeded smoothly and enantiospecifically (E > 200), affording the R-esters and leaving the S-alcohols intact. Thus, this plant lipase proved to be a promising biocatalyst for the resolution of alcohols as well as for that of carboxylic acids reported earlier.  相似文献   

7.
The activity and enantioselectivity of Candida rugosa lipase were investigated in chiral solvents, (–)-, (+)- and racemic carvone, for the resolution of 2-chloro-propionic acid with n-butanol via esterification. The activity of the enzyme studied was about 50% higher in (–)-carvone than in (+)-carvone, however the enantioselectivity was similar.  相似文献   

8.
Abstract

By screening around 30 commercially available lipases and esterases, two enzymes, C. rugosa lipase and P. fluorescens esterase, were found to posess catalytic activity and enantioselectivity (E?10) for the hydrolysis of 2-chloro-3,3,3-trifluoropropanoic acid (CTFPA) methyl and ethyl ester. Both enzymes were tentatively assigned to be (S)-selective based on the assumption that they have the same stereopreference as in the hydrolysis of methyl 2-chloropropanoate, which is a non-fluorinated analogue of CTFPA. The enzymes were applied in the kinetic resolution of CTFPA ethyl ester and 95% ee of the remaining ester could be achieved at 60% conversion. The crosslinked enzyme aggregate (CLEA) of C. rugosa lipase was found to catalyze enantioselective transesterification (E?40) of CTFPA methyl ester with ethanol. By conducting the transesterification in a 10-mL packed-bed reactor containing CLEA, it was possible to convert racemic CTFPA methyl ester into the mixture of (S)-methyl and (R)-ethyl esters with 82% and 90% ee, respectively, at 4.0 g/L-1/h-1 space-time yield, which decreased to 1.0 g/L-1/h-1 after four repetitive batches.  相似文献   

9.
研究仲醇的酶催化动力学拆分机制,发现酰基供体的结构是影响酶催化动力学拆分选择性的一个重要因素。通过实验发现了一类用于仲醇动力学拆分(KR)的优秀酰基供体——长链有机酸的对氯苯酚酯,并将这种酰基供体成功用于褶皱念珠菌脂肪酶(CRL)催化的仲醇动力学拆分过程。在1-苯乙醇的动力学拆分(KR)过程中,随着对氯苯酚有机酸酯供体中酰基部分碳原子数的增加,产物的对映体过量值(e.e.p值)也在不断地提高。当碳原子数≥5,转化率达到50%时,产物的叫.。值仍能保持大于99%。这样的规律也适用于其他的仲醇拆分过程,当选择对氯苯酚戊酸酯作为酰基供体用于其他仲醇的动力学拆分过程时,可以实现仲醇的高效拆分,反应6h转化率达到50%,产物的对映体过量值e.e.p为100%。  相似文献   

10.
Thermogravimetric and differential thermal analysis have shown that lyophilized Candida rugosa lipase A has more water bonded to it than isoenzyme lipase B: respectively 522 and 220 molecules of water per molecule of lipase. This may explain the different thermal deactivation behaviours of these enzymes in isooctane at high temperature. © Rapid Science Ltd. 1998  相似文献   

11.
The application of enzymatic catalysis for the synthesis of polysaccharide-based surfactants was investigated. The polysaccharide dextran, a neutral bacterial polysaccharide consisting of -1,6 linked glucose units, was chemically modified by the attachment of hydrophobic groups through a transesterification reaction with a vinyl decanoate. A screening of commercially available lipases and protease for the synthesis of amphiphilic polysaccharides in DMSO suggested that lipase AY from Candida rugosa modified dextran T-40 with vinyl decanoate at the highest conversion. A pH-adjustment in a phosphate buffer at pH 7.5 prior to use is crucial to make this enzyme active in DMSO. The effect of enzyme concentration and mole ratio of fatty ester to dextran T-40 on the conversion and the rate of reaction were studied. Finally, investigation of the kinetics and regioselectivity of lipase AY-catalyzed modification offer a possibility to regulate the position and the extent of hydrophobic group attached to dextran. These two properties are fundamental for controlling the physico-chemical properties of the final polymeric surfactants.  相似文献   

12.
Replacing the lactose used in the commercial preparation of lipase from Candida rugosa by dextrans with different molecular weight, several preparations with enhanced activities in esterification of (R,S)-ibuprofen in organic medium were obtained. The presence of carbohydrates modifies the microenvironment of the enzyme and maintains the hydration of the biocatalyst. We can modulate the hydrophilic/hydrophobic balance on the surface of the biocatalyst creating non covalent enzyme-dextran complexes.  相似文献   

13.
Ferulic acid esterase (FAE) from Humicola insolens was found to catalyze transesterifications of secondary alcohols with high enantioselectivity. In all cases the enzyme showed R enantiopreference.  相似文献   

14.
Purified and reconstituted quinohaemoprotein alcohol dehydrogenase (QH-EDH) from Comamonas testosteroni is shown to oxidize secondary alcohols enantioselectively. The products formed during the oxidation of secondary alcohols were positively identified as the corresponding ketones. In the oxidation of chiral secondary n-alkyl alcohols a preference of the enzyme for the S(+)alcohols was found. The apparent kinetic parameters (Km and Kmax) for a range of n-alkyl alcohols depend on the length of the alcohol chain and the location of the hydroxyl function in the chain. The enzyme is stable up to a temperature of 37 °C. Above this temperature the activity is irreversibly lost. The pH optimum of the enzyme in the conversion of secondary alcohols is 7.7.  相似文献   

15.
Resolution of (R,S)-ibuprofen (2-(4-isobutylphenyl)propionic acid) enantiomers by esterification reaction with 1-propanol in different organic solvents was studied using native Aspergillus niger lipase. The main variables controlling the process (enzyme concentration and 1-propanol:ibuprofen molar ratio) have been optimized using response surface methodology based on a five-level, two-variable central composite rotatable design, in which the selected objective function was enantioselectivity. This enzyme preparation showed preferentially catalyzes the esterification of R(−)-ibuprofen, and under optimum conditions (7% w/v of enzyme and molar ratio of 2.41:1) the enantiomeric excess of active S(+)-ibuprofen and total conversion values were 79.1 and 48.0%, respectively, and the E-value was 32, after 168 h of reaction in isooctane.  相似文献   

16.
The lipase-catalysed kinetic resolution of secondary alcohols was studied using vinyl acetate as acyl donor in propylene carbonate. Propylene carbonate offers an environmentally friendly alternative in contrast to conventional solvents. Several different lipases were investigated, and Candida antarctica lipase B (CALB) exhibited better results for all the substrates. It was shown that the addition of non-reactive base triethylamine and silver oxide to the reaction mixture enhanced the reaction rate and enantioselectivity. With propylene carbonate as solvent, CALB could be recycled without significant activity or enantioselectivity losses.  相似文献   

17.
In several lipases access to the enzyme active site is regulated by the position of a mobile structure named the lid. The role of this region in modulating lipase function is reviewed in this paper analysing the results obtained with three different recombinant lipases modified in the lid sequence: Candida rugosa lipase isoform 1 (CRL1), Pseudomonas fragi lipase (PFL) and Bacillus subtilis lipase A (BSLA). A CRL chimera enzyme obtained by replacing its lid with that of another C. rugosa lipase isoform (CRL1LID3) was found to be affected in both activity and enantioselectivity in organic solvent. Variants of the PFL protein in which three polar lid residues were replaced with amino acids strictly conserved in homologous lipases displayed altered chain length preference profile and increased thermostability. On the other hand, insertion of lid structures from structurally homologous enzymes into BSLA, a lipase that naturally does not possess such a lid structure, caused a reduction in the enzyme activity and an altered substrate specificity. These results strongly support the concept that the lid plays an important role in modulating not only activity but also specifity, enantioselectivity and stability of lipase enzymes.  相似文献   

18.
Effect of different carbon sources on lipase production by Candida rugosa   总被引:1,自引:0,他引:1  
Different carbon sources affecting growth and lipase production in Candida rugosa were studied by using batch cultures on defined medium. Carbohydrates and acids non-related to fats did not induce lipase production. The highest yields of enzyme were obtained with lipids or fatty acids as carbon sources. Tween 80 stimulated lipase biosynthesis and secretion outside the cell. Combinations of two types of substrates, carbohydrates and fatty acids, did not improve lipase production, and in some cases, their consumption was produced in a sequential pattern. Glucose presented a repressing effect on lipase production. Moreover, glucose was found to be effective in stimulating lipase secretion by cells with a high level of cell-bound lipase activity because of their previous growth in oleic acid.  相似文献   

19.
The effect of sodium dodecyl sulfate (SDS) and Triton X-100 on the hydrolytic activity of lipases A and B from Candida rugosa has been studied. Lipase B is significantly more affected than lipase A by the presence of both surfactants; Triton X-100 produces a more deleterious effect than SDS with both isoenzymes. In addition, the stability of lipases A and B in the presence of different concentrations of SDS was investigated; lipase A was more stable than isoform B. Both isoenzymes were chemically modified by reaction of their amino groups with octanoyl chloride or activated polyethylene glycol (PEG, mol. wt. 5000). In all cases the modification produced a protective effect against denaturation by SDS. In particular, PEG5000-liPases A and B were significantly more stable (stabilization factor: 3-4) than the native enzymes at the surfactant concentrations tested.  相似文献   

20.
For the first time, the Carica papaya lipase (CPL) stored in crude papain is explored as a potential enantioselective biocatalyst for obtaining chiral acids from their racemic thioesters. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester in water-saturated organic solvents is employed as a model system for studying the effects of temperature and solvents on lipase activity and enantioselectivity. An optimal temperature of 60 degrees C, based on the initial rate of (S)-thioester and a high enantiomeric ratio (i.e., E-value defined as the ratio of initial rates for both substrates) of >100 at 45 degrees C in isooctane, is obtained. Kinetic analysis, considering product inhibition and enzyme deactivation, is also performed, showing agreement between the experimental and best-fit conversions for (S)-thioester. A comparison of the kinetic and thermodynamic behaviors of CPL and Candida rugosa lipase (CRL) in isooctane and cyclohexane indicates that both lipases are very similar in terms of thermodynamic parameters DeltaDeltaH and DeltaDeltaS, initial rate of (S)-substrate, and E-value when (R,S)-naproxen 2,2,2-trifluoroethyl thioester or ester is employed as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号