首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melatonin and its derivatives modulate the Plasmodium falciparum and Plasmodium chabaudi cell cycle. Flow cytometry was employed together with the nucleic acid dye YOYO-1 allowing precise discrimination between mono- and multinucleated forms of P. falciparum-infected red blood cell. The use of YOYO-1 permitted excellent discrimination between uninfected and infected red blood cells as well as between early and late parasite stages. Fluorescence intensities of schizont-stage parasites were about 10-fold greater than those of ring-trophozoite form parasites. Melatonin and related indolic compounds including serotonin, N-acetyl-serotonin and tryptamine induced an increase in the percentage of multinucleated forms compared to non-treated control cultures. YOYO-1 staining of infected erythrocyte and subsequent flow cytometry analysis provides a powerful tool in malaria research for screening of bioactive compounds.  相似文献   

2.
Despite significant technological and conceptual advances over the last century, evaluation of the efficacy of anti-malarial vaccines or drugs continues to rely principally on direct microscopic visualisation of parasites on thick and/or thin Giemsa-stained blood smears. This requires technical expertise of the microscopist, is highly subjective and error-prone, and does not account for aberrations such as anaemia. Many published methods have shown that flow cytometric analysis of blood is a highly versatile method that can readily detect nucleic acid-stained parasitised red blood cells within cultured cell populations and in ex-vivo samples. However several impediments, including the difficulty in distinguishing reticulocytes from infected red blood cells and the fickle nature of red blood cells, have precluded the development and universal adoption of flow-cytometric based assays for ex-vivo sample analysis. We have developed a novel high-throughput assay for the flow cytometric assessment of blood that overcomes these impediments by utilising the unique properties of the nucleic acid stain DAPI to differentially stain RNA and DNA, combined with novel fixation and analysis protocols. The assay allows the rapid and reliable analysis of multiple parameters from micro-volumes of blood, including: parasitaemia, platelet count, reticulocyte count, normocyte count, white blood cell count and delineation of subsets and phenotypic markers including, but not limited to, CD4+ and CD8+ T cells, and the expression of phenotypic markers such as PD-L1 or intracellular cytokines. The assay requires less than one drop of blood and is therefore suitable for short interval time-course experiments and allows the progression of infection and immune responses to be closely monitored in the laboratory or cytometer-equipped field locations. Herein, we describe the technique and demonstrate its application in vaccinology and with a range of rodent and human parasite species including Plasmodium yoelii, Plasmodium chabaudi, Plasmodium berghei and Plasmodium falciparum.  相似文献   

3.
BACKGROUND: Microscopic analysis of blood smears is currently the most frequently used method to measure parasitemias in experiments of drug efficacy in murine models of malaria. However, it is subjective and labour intensive, which preclude its utilization in large-scale evaluation programs. Flow cytometry is an alternative method, but due to the limited specificity achieved with the currently available techniques, it has not been widely used in murine models of malaria during preclinical evaluation. We describe a new flow cytometric method based on the differences of autofluorescence and DNA content measured after staining with YOYO-1 that are observed in infected erythrocytes compared with noninfected erythrocytes. METHODS: Samples of blood from Plasmodium yoelii-infected animals were fixed with glutaraldehyde, incubated with RNAase, and stained with YOYO-1 in 96-well plate format. After acquisition, erythrocytes gated in logarithmic side/scatter plots were analyzed in bidimensional FL-2/YOYO-1 plots in comparison with unidimensional YOYO-1 analysis. RESULTS: The infected erythrocytes showed a characteristic pattern of staining different from that of noninfected erythrocytes. In routine evaluation, the limit of sensitivity was 0.01% and the measurements of parasitemia were linear at parasitemias above 0.1%. Interestingly, using this approach, infected reticulocytes could be differentiated from infected normocytes. CONCLUSIONS: The method described is robust, increases the specificity and sensitivity of detection in routine testing, and is especially well suited for detection of low parasitemias in murine models of malaria.  相似文献   

4.
Cell cycle analysis of asexual stages of erythrocytic malaria parasites   总被引:1,自引:0,他引:1  
Abstract. Intra-erythrocytic Plasmodium species can be stained with the DNA binding dye, Hoechst 33342, and the distribution of DNA content determined for parasite populations by flow cytometric measurement of fluorescence. Analysis of this distribution will determine the parasitaemia (percentage of erythrocytes infected), and the percentages of trophozoite infected red blood cells, polyparasitized (trophozoite) red blood cells, and schizont/segmenter infected red blood cells. This analysis is based on the hypothesis that the asexual parasites cycle with single G1 period, and effectively, a single S phase with no significant G2/M period except at schizogony when the genome DNA content is equivalent to 8 N or higher, dependent on the species. Data are presented to support this model.  相似文献   

5.
Cerebral malaria (CM) is a fatal complication of Plasmodium falciparum infection. Using a well defined murine model, we observed the effect on disease outcome of temporarily reducing parasite burden by anti-malarial drug treatment. The anti-malarial treatment regime chosen decreased parasitaemia but did not cure the mice, allowing recrudescence of parasites. These mice were protected against CM, despite their parasitaemia having increased, following treatment cessation, to levels surpassing that associated with CM in mice not treated with the drug. The protection was associated with reduced levels of cytokines, chemokines, CD8+ T cells and parasites in the brain. The results suggest that the development of the immunopathological response that causes CM depends on a continuous stimulus provided by parasitised red blood cells, either circulating or sequestered in small vessels.  相似文献   

6.
A novel fixative and permeabilization method is described which allows simultaneous flow cytometric detection of red blood cell membrane antigen and intracellular malaria parasites. To illustrate the method, red blood cells from patients with paroxysmal nocturnal hemoglobinuria were infected with Plasmodium falciparum and maintained in synchronous red blood cell culture. The infected red blood cells were immunolabeled with antibodies directed to the complement regulatory protein decay-accelerating factor (DAF) followed by subsequent fixations in paraformaldehyde and then glutaraldehyde in phosphate-buffered saline. Finally, DNA of the intraerythrocytic parasites was stained with propidium iodide. Using this technique, cellular morphology was well preserved, no cell aggregation was observed, and high-quality indirect immunofluorescence and parasite DNA staining were obtained with negligible nonspecific labelling. Simultaneous measurement of parasite DNA and red blood cell membrane determinants makes possible the investigation of alterations of red cell membrane proteins in association with development of intracellular malaria parasites.  相似文献   

7.
BACKGROUND: Naturally induced antibodies binding to surface antigens of Plasmodium falciparum-infected erythrocytes can be detected by direct agglutination of infected erythrocytes or by indirect immunofluorescence on intact, unfixed, infected erythrocytes. Agglutinating antibodies have previously been shown to recognise Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). This protein is inserted by the parasite into the host cell membrane and mediates the adhesion to the venular endothelium of the host organism in vivo. METHODS: Erythrocytes infected at high parasitaemias with ethidium-bromide-labelled mature forms of P. falciparum parasites were sequentially exposed to immune plasma, goat anti-human immunoglobulin (Ig) G, and fluorescein-isothiocyanate-conjugated rabbit anti-goat Ig. Plasma antibodies recognising antigens exposed on the surface of parasitised erythrocytes were subsequently detected by two-colour flow cytometry. RESULTS: Binding of human antibodies to the surface of erythrocytes infected with adhesive strains of Plasmodium falciparum can be measured by the two-colour flow cytometry (FCM) assay described. In addition, we demonstrate that the adhesive capacity of a parasite isolate correlates with the capacity of human immune plasmas to label the isolate as detected by FCM. We also show that the antigens recognised by the labelling antibodies are strain specific and that their molecular weights are in the range previously described for PfEMP1 antigens. CONCLUSIONS: Our FCM assay predominantly detects antibodies that recognise PfEMP1 and thus constitutes a convenient assay for the analysis of acquisition, maintenance, and diversity of anti-PfEMP1-specific antibodies and for the examination of class and subclass characteristics.  相似文献   

8.
Rapid and reliable identification of various human red cells parasites is important in many chemotherapeutic and immunologic studies. Because manual microscopic counting is tedious and imprecise, we have developed a simple diagnostic procedure for the automated flow cytometric detection of in vitro infected red cells, using a nucleic acid-binding fluorescent dye, acridine orange. Human malaria (Plasmodium falciparum)-infected red cells from continuous human erythrocyte culture were incubated at room temperature in acridine orange stain for 5 min after which the samples were analyzed by flow cytometry. Since mature red cells contain no DNA, infected red cells were identified with a distinct fluorescent signal. A total of 200,000 cells per sample were counted and analyzed in less than 2 min. Rings, trophozoites, and schizonts were assessed and identified in synchronized infected red cell cultures by flow cytometry. In addition, various stages of infected red cells were isolated with a cell sorter. This rapid method permits accurate and reliable assessment of data with the exclusion of anomalous data such as damaged cells, extraneous material, and contaminating particles.  相似文献   

9.
During blood stage infection, malaria parasites invade, mature, and replicate within red blood cells (RBCs). This results in a regular growth cycle and an exponential increase in the proportion of malaria infected RBCs, known as parasitemia. We describe a flow cytometry based protocol which utilizes a combination of the DNA dye Hoechst, and the mitochondrial membrane potential dye, JC-1, to identify RBCs which contain parasites and therefore the parasitemia, of in vivo blood samples from Plasmodium chabaudi adami DS infected mice. Using this approach, in combination with fluorescently conjugated antibodies, parasitized RBCs can be distinguished from leukocytes, RBC progenitors, and RBCs containing Howell-Jolly bodies (HJ-RBCs), with a limit of detection of 0.007% parasitemia. Additionally, we outline a method for the comparative assessment of merozoite invasion into two different RBC populations. In this assay RBCs, labeled with two distinct compounds identifiable by flow cytometry, are transfused into infected mice. The relative rate of invasion into the two populations can then be assessed by flow cytometry based on the proportion of parasitized RBCs in each population over time. This combined approach allows the accurate measurement of both parasitemia and merozoite invasion in an in vivo model of malaria infection.  相似文献   

10.
Hydroethidine has been used as a viability dye in various haemoparasites, including Plasmodium species. We compared flow cytometric quantification by hydroethidine and thiazole orange in P. falciparum. Dead parasites that did not develop or replicate exhibited high levels of DNA fragmentation and abnormal microscopic morphology, but were detected as viable ring-stage parasites by hydroethidine. Hydroethidine quantification was similar to thiazole orange, a DNA-binding dye that stains live and dead parasites. Data obtained cast concerns on hydroethidine as a suitable viability dye in P. falciparum and highlight the necessity of proper gating in flow cytometric studies quantifying parasitaemia.  相似文献   

11.
We studied the intracellular pH of Vero cells parasitised by Trypanosoma cruzi, using different methods: fluorimetric measurement after labelling the cells with the pH-sensitive intracellular fluorescent dye 2′,7′,-bis- (2-carboxyethyl)-5- (and-6)-carboxyfluorescein, acetoxymethyl ester; flow cytometry; and image analysis after staining the cells with neutral-red vital stain. The results show that the intracellular pH of the parasitised cells rose in comparison with that of the uninfected control cells. A study of the population of parasitised cells made by flow cytometry allowed us to subdivide the cells from the infected cultures into two populations according to their pH as obtained by fluorimetric measurements. Image analysis showed that the cell cytoplasm was more alkaline in the vicinity of the sites containing parasites. Treatment of the parasitised cells with amiloride, ouabain, or with 4,4′-diisothiocyano-2,2′-stilbene disulphate consistently lowered the pH values of the parasitised cells, but not sufficiently to return to the values of the non-parasitised control cells. When the control cells were subject to similar treatments with the inhibitors, only amiloride acidified the cytoplasm to any extent. The basification undergone by the parasitised cells was independent of the transport systems and may be a consequence of the release of NH+4 by the intracellular amastigotes. © 1998 Australian Society for Parasitology.  相似文献   

12.
Flow cytometry is a potentially efficient approach for the quantification of parasitemias in experimental malaria infections and drug susceptibility assays using rodent malaria models such as Plasmodium berghei. In this study, we used two red DNA-binding fluorochromes, rhodamine 800 (R800) and LD700, to measure parasitemia levels in whole blood samples from mice infected with P. berghei. Blood samples were treated with RNAse A to eliminate RNA-derived signals. Propidium iodide, which stains both DNA and RNA, was used as a positive control. The parasitemia levels determined by R800 and LD700 were comparable to those calculated by microscopic analysis of blood smears and flow cytometry using Hoechst 33258. RNAse treatment did not affect these measurements. We also used R800 or LD700 to quantify parasitemias in mice infected with a GFP-expressing P. berghei line to correlate the parasitemia levels determined by DNA staining versus parasite numbers using GFP fluorescence as a surrogate measurement. A positive correlation was found between levels determined by flow cytometry using these dyes and those measured by GFP expression. Similar results were obtained when parasitemias determined by flow cytometry were compared to those determined by conventional microscopy. The limit of detection of infected red blood cells using R800 or LD700 staining was 0.1% and 0.15%, respectively. This study demonstrates that red laser-based flow cytometry using R800 or LD700 can be used for effective quantification of parasitemia levels in Plasmodium infected red blood cells. Furthermore, this method has the advantage that it does not require RNAse pretreatment and allows for a greater amount of cells to be analyzed for parasite burden than otherwise measured by conventional microscopy. ? 2011 International Society for Advancement of Cytometry.  相似文献   

13.
D Marie  D Vaulot    F Partensky 《Applied microbiology》1996,62(5):1649-1655
Novel blue light-excited fluorescent dyes for nucleic acids (YOYO-1, YO-PRO-1, and PicoGreen) were tested on cultures of Escherichia coli and of a variety of marine prokaryotes. Results of flow cytometric DNA analyses were compared with those obtained with the UV-excited dyes bis-benzimide Hoechst 33342 or 4', 6-diamidino-2-phenylindole (DAPI). YOYO-1, YO-PRO-1, and PicoGreen can be used only on aldehyde-fixed cells and need to be supplemented with cofactors such as potassium, citrate, or EDTA. They are highly sensitive to ionic strength. Consequently, seawater culture samples cannot be stained directly with these dyes and require at least a 10-fold dilution with distilled water to obtain reliable fluorescence signals. After treatment with RNase, coefficients of variation for the G1 peak of the DNA distributions of the different strains tested with YOYO-1 or PicoGreen indicated in general an improvement over Hoechst 33342 staining. These novel dyes can be used to enumerate prokaryotic cells by flow cytometry, as demonstrated with E. coli. However, their sensitivity to ionic strength makes them unsuitable for cell cycle analysis in natural samples.  相似文献   

14.
We have established a rapid, simple and sensitive flow cytometric system for the detection of Plasmodium falciparum that involves lysing erythrocytes and staining parasites at the same time using a newly developed hemolysing and staining solution containing dodecyl methyl ammonium chloride and acridine orange. In this system, freed parasites of P. falciparum could be plotted separately from erythrocyte ghosts, white blood cells and platelets on the two-dimensional scattergram of forward-angle light scatter and green fluorescence by flow cytometry with an argon laser. It took only 2–3 min per sample to obtain the scattergram and analyze the data, including the time of sample preparation for flow cytometric analysis. Sample preparation with this method does not require any difficult handling procedures. The threshold of parasite detection was almost equal to that of microscopic examination for cultured P. falciparum. The results of drug-susceptibility assays using this system were also almost identical to those obtained using microscopic examination. In this system, parasites at different erythrocytic stages could be easily distinguished. This system must prove useful and practical for basic laboratory studies of P. falciparum including those requiring the differential measurement of parasites at specific erythrocytic stages.  相似文献   

15.
Lipids were extracted from red blood cells infected with Plasmodium berghei, from the membranes of infected red cells and from free parasites. A radioimmunoassay was used to detect antibodies to these lipids in sera from convalescent and immune rats. Most of the antigenic activity could be attributed to the parasite although some activity was found in lipids isolated from the membranes of infected red blood cells. Absorption studies showed that the binding was specific for malarial lipid antigens. Immune sera showed no cross-reactivity with lipids from red blood cells of non-infected rats. However, sera from non-infected control rats showed low levels of cross-reactivity with the parasitized red cell-derived lipids. Levels of anti-lipid antibodies were directly correlated with the progress of the infection. The highest antibody level occurred when the parasitaemia reached zero. The malarial lipids had no effect on lymphoblast transformation of immune splenocytes in vitro. However, liposomes prepared from either malarial or non-specific lipids caused an increased response to antigen by the blast cells.  相似文献   

16.
ABSTRACT: BACKGROUND: Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. METHODS: Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. RESULTS: A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signalbackground improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. DISCUSSION: Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene-expression profiling and analysis. The approach outlined here results in substantially improved yield of GFP-expressing parasites, and requires decreased sorting time in comparison to standard methods. It is anticipated that this protocol will be useful for a wide range of applications involving rare events.  相似文献   

17.
Methods facilitating research in malaria are of pivotal relevance. Flow cytometry offers the possibility of rapid enumeration of parasitemia. It relies on staining the parasite DNA to distinguish between infected and non-infected red blood cell (RBC) populations. Unfortunately, in rodents abundant reticulocyte RNA interferes with the application of the method. This results in time-consuming sample preparation protocols that offer no clear advantage over microscopic counting. We re-evaluated the use of the DNA/RNA discriminating vital fluorochrome acridine orange (AO) for rapid flow cytometric enumeration of parasitemia in rodents. Whole blood from rodents infected with Plasmodium berghei and Plasmodium yoelii was stained with AO and analyzed by flow cytometer. A newly developed two-channel (FL1/FL3) detection method was compared with conventional one-channel (FL1) detection and microscopic counting. The new AO two-channel detection method clearly discriminated between infected and non-infected RBC populations. It showed to be linear above parasitemias of 0.3%. Sample processing time amounted to approximately 5 min. It is shown that AO can be used for rapid, precise, and accurate enumeration of parasitemia in rodents. Due to its ease of handling the method might find widespread application in malaria research.  相似文献   

18.
The Saimiri sciureus monkey is a well-established host for experimental studies with human malaria parasites. During the course of iterative inoculations with Plasmodium falciparum parasitised red blood cells (RBC), anti-RBC alloantibodies were detected in the sera of two of eight Saimiri monkeys. These anti-RBC antibodies were further used to investigate RBC phenotypes in 35 colony-reared Saimiri monkeys by flow cytometry. Three RBC phenotypes (named I-III) were observed. Their distribution was I (86%), II (11%) and III (3%). Using the Palo Alto FUP-2 strain, a variant P. falciparum line insensitive to hyperimmune serum and the passive transfer of anti-RBC alloantibodies, a dramatic drop in parasite growth was documented in an incompatible monkey.  相似文献   

19.
Flow cytometry is potentially an effective method for counting malaria parasites, but inconsistent results have hampered its routine use in rodent models. A published two-channel method using acridine orange offers clear discrimination between the infected and uninfected erythrocytes. However, preliminary studies showed concerns when dealing with Plasmodium berghei-infected blood samples with high numbers of reticulocytes.In hyperparasitemic or chronic P. berghei infection, enhanced erythropoietic activity results in high numbers of circulating immature reticulocytes. We show that even though the protocol offered good discrimination in newly infected animals, discrimination between infected erythrocytes and uninfected reticulocytes became difficult in animals with hyperparasitemia or chronic infections maintained with subcurative treatment. Discrimination was especially hampered by increased nucleic acid content in immature uninfected reticulocytes. Our data confirms that though flow cytometry is a promising analytical tool in malaria research, care should still be taken when analysing samples from anemic or chronically infected animals.  相似文献   

20.
BACKGROUND: The need for improved malaria diagnostics has long been recognized. METHODS: Human parasitized erythrocytes based on the principles of flow cytometry (FCM) method is described for the determination of parasitemia in Plasmodium falciparum cultures using the fluorescence activated cell sorter and DNA-binding fluorescent dye, YOYO-1. The same assay samples can be also evaluated both microscopically and by scintillation counting after use of (3)H-hypoxanthine-labeled parasites. RESULTS: The counts of uninfected, infected, and nucleated cells occurred with high precision. The cells were categorized into different populations according to their physical or chemical properties such as RNase treatment and compensation required optimization. The detection and quantitation limits in the assay were 0.003% and 0.008% parasitemia, respectively. Overall, the parasite counts by FCM measurement correlated highly (r(2) = 0.923-0.968) with the parasitemia measured by (3)H-hypoxanthine incorporation assay when parasites variants incubated with various antimalarial drugs. In addition, the low levels of parasitemia (7.9%-21.3%) detected by microscopy than by FCM may be related to a number of tiny schizonts externally attached to the erythrocyte membranes but were not definitely inside the erythrocyte that normally would never be included in microscopy counting. CONCLUSION: On the basis of data reported herein, a rapid, high sensitivity, lower sampling error and reliable identification of human parasitized erythrocytes by the principles of FCM have been established. Published 2007 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号