首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified the sea urchin cognate of the mammalian signal recognition particle (SRP). This particle contains the diagnostic 7 SL small RNA, sediments at a similar velocity to that reported for the mammalian particle, and is found associated with the ER and polysomes. We have examined its subcellular localization during embryogenesis in order to determine whether it could serve in a translational regulatory capacity for a subset of the stored maternal mRNAs. In these studies the 7 SL RNA was used as a marker for the particle, since we determined that the 7 SL RNA exists exclusively within the SRP-like particle at all developmental stages. The relative distribution of the SRP among cytoplasmic structures changes dramatically during development. This represents an actual change in subcellular localization because the 7 SL RNA level remains nearly constant per embryo until the pluteus stage, when it increases slightly. In eggs, the SRP exists almost entirely free in the cytoplasm as an 11 S particle. Very soon after fertilization and throughout development there is an increase in the association of the particle with rapidly sedimenting structures, until by the pluteus stage greater than 90% of the SRP exists in a bound state. The nature of the associations is complex, and the bound structures include, at least in part, ribosomes, polysomes, and microsomes. The SRP is associated with microsomal membranes in gastrula (36 hr) but not in blastula (12 hr) or earlier embryos. Using the criteria of sensitivity to Triton X-100, we determined that 16% of the SRP in a 10,000g cytoplasmic fraction was bound to membranes in a microsomal (endoplasmic reticulum)-containing fraction in the gastrula. In contrast, less than 1% was membrane associated in the blastula. The SRP was also found in a ribosome-polysome fraction in 12-, 36-, and 48-hr embryos, but not in eggs. Finally, a small but significant portion of the SRP was found associated with monosomes in cleavage stage embryos. The possible role the SRP could play in the elongation arrest of stored maternal messages for secreted proteins is discussed.  相似文献   

2.
A large fraction of the translationally repressed non-globin messenger RNA in duck erythroblasts is present in non-polyribosomal free mRNP structures which sediment in the 30-40-S range ('35 S'). In 0.5 M KCl, they form core complexes which show a pronounced peak at about 32 S containing mRNA and a discrete spherical RNP particle with a diameter of about 12 nm and the typical morphology of a prosome [H.-P. Schmid et al. (1984) EMBO J. 3, 29-34]. Buoyant density measurements and chromatography on oligo(dT)-cellulose indicate that this particle is bound to mRNA; it can be released from the mRNA by treatment of the free mRNP fraction with SDS. This prosome-like particle inhibits the translation of mRNA in vitro. It is composed primarily of multimers of a single 21-kDa protein and at least one species of RNA of about 80-100 nucleotides. It is resistant to dissociation by 2 M CS2SO4 and 1% SDS; the 21-kDa protein is not attacked by proteinase K unless the particle is extracted with phenol prior to treatment with the protease. The small RNA moiety of the particle hybridizes to the poly(A)-rich mRNA derived from the free mRNPs, as well as to polyribosomal mRNA. These data indicate that prosomes may serve to regulate mRNA translation; they show furthermore that prosome-like particles (about 600 kDa mass) may be built of up to 25 molecules of a single specific protein, rather than of the entire set of about 20 prosomal proteins previously identified.  相似文献   

3.
Apolipoprotein A-I (apoA-I) induces the translocation of newly synthesized cholesterol as well as caveolin-1 to the cytosolic lipid-protein particle (CLPP) fraction in astrocytes before its appearance in high density lipoprotein generated in the medium (Ito, J., Y. Nagayasu, K. Kato, R. Sato, and S. Yokoyama. 2002. Apolipoprotein A-I induces translocation of cholesterol, phospholipid, and caveolin-1 to cytosol in rat astrocytes. J. Biol. Chem. 277: 7929-7935). We here report the association of signal-related molecules with CLPP. ApoA-I induces rapid translocation of protein kinase Calpha to the CLPP fraction and its phosphorylation in astrocytes. ApoA-I also induces the translocation of phospholipase Cgamma to CLPP. Diacylglyceride (DG) production is increased by apoA-I in the cells, with a maximum at 5 min after the stimulation, and the increase takes place also in the CLPP fraction. An inhibitor of receptor-coupled phospholipase C, U73122, inhibited all the apoA-I-induced events, such as DG production, cholesterol translocation to the cytosol, release of cholesterol, and translocation of protein kinase Calpha into the CLPP fraction. CLPP may thus be involved in the apoA-I-initiated signal transduction in astrocytes that is related to intracellular cholesterol trafficking for the generation of high density lipoprotein in the brain.  相似文献   

4.
The involvement of possible cytoplasmic factors in ATP-dependent postttranslational translocation of proteins into Escherichia coli membrane vesicles was examined. The precursor of OmpA protein was partially purified by DEAE-cellulose chromatography, and its translocation was found to require material from the soluble cytoplasmic fraction. The fractionated active cytoplasmic translocation factor (CTF) was protease sensitive, micrococcal nuclease insensitive, N-ethylmaleimide resistant, and heat labile. The heat sensitivity of the CTF allowed its specific and preferential inactivation in the crude-precursor synthesis mixture, which provided a simple and rapid assay procedure for the factor during purification. Two active fractions were detected upon further fractionation: the major one was about 8S in sucrose gradient centrifugation and 120 kilodaltons by Sephadex filtration, whereas the other was about 4S and 60 kilodaltons in sucrose gradient centrifugation and by Sephadex filtration, respectively. The active fractions could also be fractionated by DEAE-Sepharose chromatography. These CTFs are apparently different from the previously reported 12S export factor (M. Muller and G. Blobel, Proc. Natl. Acad. Sci. USA 81:7737-7741, 1984).  相似文献   

5.
For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel (identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip) was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP-PhyloChip for diversity screening of SRPs in environmental and clinical samples was tested by using samples from periodontal tooth pockets and from the chemocline of a hypersaline cyanobacterial mat from Solar Lake (Sinai, Egypt). Consistent with previous studies, SRP-PhyloChip indicated the occurrence of Desulfomicrobium spp. in the tooth pockets and the presence of Desulfonema- and Desulfomonile-like SRPs (together with other SRPs) in the chemocline of the mat. The SRP-PhyloChip results were confirmed by several DNA microarray-independent techniques, including specific PCR amplification, cloning, and sequencing of SRP 16S rRNA genes and the genes encoding the dissimilatory (bi)sulfite reductase (dsrAB).  相似文献   

6.
7.
Ionophore activation of the human polymorphonuclear neutrophil results in eicosanoid synthesis and the accumulation of inactive 5-lipoxygenase in a membrane compartment. We report here that inhibition of self-inactivation of 5-lipoxygenase in ionophore-treated neutrophils with the reversible inhibitor zileuton, results in the accumulation of active 5-lipoxygenase in the membrane fraction. In zileuton plus ionophore-treated cells, 77% of the specific activity of the cytosolic enzyme from resting cells was diverted to the membrane fraction compared to 22% of the activity translocated when ionophore alone was used to activate the neutrophils. Accumulation of active membrane-associated 5-lipoxygenase was inhibited and reversed by the 5-lipoxygenase translocation inhibitor MK-886. The membrane-associated 5-lipoxygenase was two times more efficient in the production of leukotriene A4 from arachidonate-derived 5-hydroperoxyeicosatetraenoic acid than the cytosolic enzyme. Unlike the cytosolic enzyme, membrane-associated 5-lipoxygenase could metabolize 12(S)- and 15(S)-hydroxyeicosatetraenoic acid to 5(S),12(S)- and 5(S),15(S)-dihydroxyeicosatetraenoic acid, respectively. The ability to metabolize hydroxy fatty acids was dependent upon 5-lipoxygenase-activating protein association, but was lost if 5-lipoxygenase was eluted from the membrane by MK-886. These studies reveal for the first time that significant quantities of active 5-lipoxygenase can be detected in the membrane fraction of activated neutrophils and show that membrane association can alter the substrate specificity of 5-lipoxygenase which is further evidence for the role of the membrane-associated enzyme in the synthesis of 5-lipoxygenase metabolites.  相似文献   

8.
Binding of the signal recognition particle (SRP) to signal sequences during translation leads to an inhibition of polypeptide elongation known as translation arrest. The arrest activity is mediated by a discrete domain comprised of the Alu portion of SRP RNA and a 9 and 14 kDa polypeptide heterodimer (SRP9/14). Although very few nucleotides in SRP RNA are conserved throughout evolution, the remarkable conservation of G24, which resides in the region of SRP9/14 interaction, suggests that it is essential for translation arrest. To understand the functional significance of the G24 residue, we made single base substitutions in SRP RNA at this position and analyzed the ability of the mutants to bind SRP9/14 and to reconstitute functional SRPs. Mutation of G24 to C reduced binding to SRP9/14 by at least 50-fold, whereas mutation to A and U reduced binding approximately 2- and 5-fold respectively. The mutant RNAs could nevertheless assemble into SRPs at high subunit concentrations. SRPs reconstituted with mutant RNAs were not significantly defective in translation arrest assays, indicating that the conserved guanosine does not interact directly with the translational machinery. Taken together, these results demonstrate that G24 plays an important role in the translation arrest function of SRP by mediating high affinity binding of SRP9/14.  相似文献   

9.
For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel (identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip) was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP-PhyloChip for diversity screening of SRPs in environmental and clinical samples was tested by using samples from periodontal tooth pockets and from the chemocline of a hypersaline cyanobacterial mat from Solar Lake (Sinai, Egypt). Consistent with previous studies, SRP-PhyloChip indicated the occurrence of Desulfomicrobium spp. in the tooth pockets and the presence of Desulfonema- and Desulfomonile-like SRPs (together with other SRPs) in the chemocline of the mat. The SRP-PhyloChip results were confirmed by several DNA microarray-independent techniques, including specific PCR amplification, cloning, and sequencing of SRP 16S rRNA genes and the genes encoding the dissimilatory (bi)sulfite reductase (dsrAB).  相似文献   

10.
Strategies for avoiding ion accumulation in leaves of plants grown at high concentration of NaCl (100 mol m(-3)) in the rooting media, i.e. retranslocation via the phloem and leaching from the leaf surface, were quantified for fully developed leaves of maize plants cultivated hydroponically with or without salt, and with or without sprinkling (to induce leaching). Phloem sap, apoplastic fluid, xylem sap, solutes from leaf and root tissues, and the leachate were analysed for carbohydrates, amino acids, malate, and inorganic ions. In spite of a reduced growth rate Na(+) and Cl(-) concentrations in the leaf apoplast remained relatively low (about 4-5 mol m(-3)) under salt treatment. Concentrations of Na(+) and Cl(-) in the phloem sap of salt-treated maize did not exceed 12 and 32 mol m(-3), respectively, and thus remained lower than described for other species. However, phloem transport rates of these ions were higher than reported for other species. The relatively high translocation rate of ions found in maize may be due to the higher carbon translocation rate observed for C(4) plants as opposed to C(3) plants. Approximately 13-36% of the Na(+) and Cl(-) imported into the leaves through the xylem were exported by the phloem. It is concluded that phloem transport plays an important role in controlling the NaCl content of the leaf in maize. Surprisingly, leaching by artificial rain did not affect plant growth. Ion concentrations in the leachate were lower than reported for other plants but increased with NaCl treatment.  相似文献   

11.
Peroxygenase-catalyzed epoxidation of oleic acid in preparations of cereal seeds was investigated. The 105,000g particle fraction of oat (Avena sativa) seed homogenate showed high peroxygenase activity, i.e. 3034 [plus or minus] 288 and 2441 [plus or minus] 168 nmol (10 min)-1 mg-1 protein in two cultivars, whereas the corresponding fraction obtained from barley (Hordeum vulgare and Hordeum distichum), rye (Secale cereale), and wheat (Triticum aestivum) showed only weak activity, i.e. 13 to 138 nmol (10 min)-1 mg-1 protein. In subcellular fractions of oat seed homogenate, peroxygenase specific activity was highest in the 105,000g particle fraction, whereas lipoxygenase activity was more evenly distributed and highest in the 105,000g supernatant fraction. Incubation of [1-14C]linoleic acid with the 105,000g supernatant of oat seed homogenate led to the formation of several metabolites, i.e. in order of decreasing abundance, 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid, 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, cis-9,10-epoxy-12(Z)-octadecenoic acid [mainly the 9(R),10(S) enantiomer], cis-12,13-epoxy-9(Z)-octadecenoic acid [mainly the 12(R),13(S) enantiomer], threo-12,13-dihydroxy-9(Z)-octadecenoic acid, and 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. Incubation of linoleic acid with the 105,000g particle fraction gave a similar, but not identical, pattern of metabolites. Conversion of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, a naturally occurring oxylipin with antifungal properties, took place by a pathway involving sequential catalysis by lipoxygenase, peroxygenase, and epoxide hydrolase.  相似文献   

12.
The outer dynein arm of Chlamydomonas flagella, when isolated under Mg(2+)-free conditions, tends to dissociate into an 11 to 12S particle (12S dynein) containing the gamma heavy chain and a 21S particle (called 18S dynein) containing the alpha and beta heavy chains. We show here that functional outer arms can be reconstituted by the addition of 12S and 18S dyneins to the axonemes of the outer armless mutants oda1- oda6. A third factor that sediments at integral 7S is required for efficient reconstitution of the outer arms on the axonemes of oda1 and oda3. However, this factor is not necessary for reconstitution on the axonemes of oda2, oda4, oda5, and oda6. SDS-PAGE analysis indicates that the axonemes of the former two mutants lack a integral of 70-kD polypeptide that is present in those of the other mutants as well as in the 7S fraction from the wild-type extract. Furthermore, electron micrographs of axonemal cross sections revealed that the latter four mutants, but not oda1 or oda3, have small pointed structures on the outer doublets, at a position in cross section where outer arms normally occur. We suggest that the 7S factor constitutes the pointed structure on the outer doublets and facilitates attachment of the outer arm. The discovery of this structure raises a new question as to how the attachment site for the outer arm dynein is determined within the axoneme.  相似文献   

13.
We report the reconstruction, from a core-particle and split-protein fraction, of the larger subribosomal particle of rabbit reticulocytes. The reassembled particle was active in polyphenylalanine synthesis and in the puromycin reaction. The core-particles and split-protein fractions were obtained by treatment of the larger subparticle with salt solutions containing NH4+ and Mg2+ in the molar ratio 40:1 over the range 2.25-2.75 M-NH4Cl/56-69mM-MgCl2 at 0 degrees C. This treatment led to the loss of about eight proteins (approx. 17% of the protein moiety), which were found wholly or largely in the split-protein fraction as shown by two-dimensional gel electrophoresis. The core particle retained 5S rRNA and had much decreased (no more than 10% of control) ability to function in the puromycin reaction or in poly (U)-directed polyphenylalanine synthesis. Activity was recovered when the recombined core-particle and split-protein fractions were dialysed overnight at 4 degrees C against 0.3M-NH4Cl/15mM-MgCl2/1mM-dithiothreitol/15% (v/v) glycerol/20mM-Tris/HCl, pH 7.6, and then heated for 1 h at 37 degreesEES C. The recovery was 40-80% of the original activity. Raising the concentration of MgCL2 to 300 mM in 2.5 M-NH4CL led to the removal of seven rather than eight proteins, and the core particle remained active in the puromycin reaction. We infer that the protein retained by raising the concentration of Mg2+ is an essential component of the peptidyltransferase centre of the ribosome.  相似文献   

14.
The Escherichia coli ribosomal protein L7/L12 is central to the translocation step of translation, and it is known to be flexible under some conditions. The assignment of electron density to L7/L12 was not possible in the recent 2.4 A resolution x-ray crystallographic structure (Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) Science 289, 905-920). We have localized the two dimers of L7/L12 within the structure of the 70 S ribosome using two reconstitution approaches together with cryo-electron microscopy and single particle reconstruction. First, the structures were determined for ribosomal cores from which protein L7/L12 had been removed by treatment with NH(4)Cl and ethanol and for reconstituted ribosomes in which purified L7/L12 had been restored to core particles. Difference mapping revealed that the reconstituted ribosomes had additional density within the L7/L12 shoulder next to protein L11. Second, ribosomes were reconstituted using an L7/L12 variant in which a single cysteine at position 89 in the C-terminal domain was modified with Nanogold (Nanoprobes, Inc.), a 14 A gold derivative. The reconstruction from cryo-electron microscopy images and difference mapping placed the gold at four interfacial positions. The finding of multiple sites for the C-terminal domain of L7/L12 suggests that the conformation of this protein may change during the steps of elongation and translocation.  相似文献   

15.
We have determined the relationship between microtubule length and translocation velocity from recordings of bovine brain microtubules translocating over a Paramecium 22S dynein substratum in an in vitro assay chamber. For comparison with untreated samples, the 22S dynein has been subjected to detergent and/or to pretreatments that induce phosphorylation of an associated 29 kDa light chain. Control and treated dyneins have been used at the same densities in the translocation assays. In any given condition, translocation velocity (v) shows an initial increase with microtubule length (L) and then reaches a plateau. This situation may be represented by a hyperbola of the general form v = aL/(L+b), which is formally analogous to the Briggs-Haldane relationship, which we have used to interpret our data. The results indicate that the maximum translocation velocity Vo(= a) is increased by pretreatment, whereas the length constant KL(= b), which corresponds to Km, does not change with pretreatment, implying that the mechanochemical properties of the pretreated dyneins differ from those of control dyneins. The conclusion that KL is constant for defined in vitro assays rules out the possibility that the velocity changes seen are caused by changes in geometry in the translocation assays or by the numbers of dyneins or dynein heads needed to produce maximal translocational velocity. From our analysis, we determine that f, the fraction of cycle time during which the dynein is in the force-generating state, is small--roughly 0.01, comparable to the f determined previously for heavy meromyosin. The practical limits of these mechanochemical changes imply that the maximum possible ciliary beat frequency is about 120 Hz, and that in the physiological range of 5-60 Hz, beat frequency could be controlled by varying the numbers of phosphorylated outer arm dyneins along an axonemal microtubule.  相似文献   

16.
We demonstrate that GFP-PKCepsilon concentrates at a perinuclear site in living fibroblasts and that cell passage induces rapid translocation of PKCepsilon to the periphery where it appears to colocalise with F-actin. When newly passaged cells have adhered and are proliferating again, GFP-PKCepsilon returns to its perinuclear site. GFP-PKCepsilon co-localises with wheat germ agglutinin suggesting that it is associated with the Golgi at the perinuclear site. In support, PKCepsilon is detected in a Golgi-enriched fraction in pre-passage cells but is lost from the fraction after passage. PKCepsilon at the perinuclear Golgi site is phosphorylated at Ser729 but cell passage induces the loss of the phosphate at this site as reported previously [England et al. (2001) J. Biol. Chem. 276, 10437-10442]. PKCepsilon S729A, S729E and S729T mutants, which are not recognised by a specific antiphosphoPKCepsilon (Ser729) antibody, do not concentrate at a perinuclear/Golgi site in proliferating fibroblasts. This suggests that both phosphorylation and serine rather than threonine are needed at position 729 to locate PKCepsilon at its perinuclear/Golgi site. Phorbol ester induced translocation of PKCepsilon to the nucleus also requires dephosphorylation at Ser729; after translocation nuclear PKCepsilon lacks a phosphate at Ser729. Sulphation and secretion of glycosaminoglycan (GAG) chains from fibroblasts increases on passage and returns to basal as cells proliferate showing that cell passage influences secretory events at the Golgi. The results indicate that Ser729 phosphorylation plays a role in determining PKCepsilon localisation in fibroblasts.  相似文献   

17.
Damaged starch characterisation by ultracentrifugation   总被引:1,自引:0,他引:1  
The relative molecular size distributions of a selection of starches (waxy maize, pea and maize) that had received differing amounts of damage from ball milling (as quantified by susceptibility to alpha-amylase) were compared using analytical ultracentrifugation. Starch samples were solubilised in 90% dimethyl sulfoxide, and relative size distributions were determined in terms of the apparent distribution of sedimentation coefficients g*(s) versus s(20,w). For comparison purposes, the sedimentation coefficients were normalised to standard conditions of density and viscosity of water at 20 degrees C, and measurements were made with a standard starch loading concentration of 8 mg/mL. The modal molecular size of the native unmilled alpha-glucans were found to be approximately 50S, 51S and 79S for the waxy maize, pea and maize amylopectin molecules, respectively, whilst the pea and maize amylose modal molecular sizes were approximately 14S and approximately 12S, respectively. As the amount of damaged starch increased, the amylopectin molecules were eventually fragmented, and several components appeared, with the smallest fractions approaching the sedimentation coefficient values of amylose. For the waxy maize starch, the 50S material (amylopectin) was gradually converted to 14S, and the degradation process included the appearance of 24S material. For the pea starch, the situation was more complicated than the waxy maize due to the presence of amylose. As the amylopectin molecules (51S) were depolymerised by damage within this starch, low-molecular-weight fragments added to the proportion of the amylose fraction (14S)--although tending towards the high-molecular-weight region of this fraction. As normal maize starch was progressively damaged, a greater number of fragments appeared to be generated compared to the other two starches. Here, the 79S amylopectin peak (native starch) was gradually converted into 61 and 46S material and eventually to 11S material with a molecular size comparable to amylose. Amylose did not appear to be degraded, implying that all the damage was focused on the amylopectin fraction in all three cases. Specific differences in the damage profiles for the pea and maize starches may reflect the effect of lipid-complexed amylose in the maize starch.  相似文献   

18.
We have examined the levels of gene expressions and activities of protein phosphatases, PP1 and PP2A, in rat regenerating livers. PP1 alpha mRNA started to increase from 6 h after partial hepatectomy (PH) and showed two peaks at 12 and 48 h. PP2A mRNA level showed two peaks at 6 and 10-12 h. Protein phosphatase activities were determined both in non-nuclear fraction and in nuclei. While spontaneous PP1 activity in non-nuclear fraction was nearly constant, potential PP1 activity revealed by Co(2+)-trypsin treatment showed a small peak between 7 and 12 h. In nuclei, both spontaneous and potential PP1 activity began to increase from 4-7 h after PH, reached a maximum (about 2.5-fold over control levels) at 12 h, the time which corresponds to the G1 to S transition in the cell cycle, and then declined back to control levels by 7 days. PP2A activity in non-nuclear fraction was nearly constant in both spontaneous and potential forms. PP2A activity in both forms in nuclei was very low throughout. These results suggest the possibility that PP1 in nuclei plays some role in the G1 to S transition in the cell cycle of hepatocyte proliferation.  相似文献   

19.
Animals have evolved mechanisms to maintain circulating nutrient levels when energy demands exceed feeding opportunities. Mammals store most of their energy as triacylglycerol in the perilipin-coated lipid droplets of adipocytes. How newly synthesized triacylglycerol is delivered to perilipin-coated lipid droplets is poorly understood. Perilipin is a member of the evolutionarily related family of PAT proteins (Perilipin, Adipophilin, TIP47), which is defined by sequence similarity and association with lipid droplets. We previously showed that S3-12, which is also a member of this family, associates with a separate pool of lipid droplets that emerge when triacylglycerol storage is driven by adding oleate to the culture medium of adipocytes. Our current data extend these findings to demonstrate that nascent lipid droplets emerge with a coat composed of S3-12, TIP47, and adipophilin. After 100 min of oleate treatment, the nascent lipid droplets are more heterogeneous: S3-12 and TIP47 coat smaller, peripheral droplets and adipophilin coats a more medial population of droplets. Fractionation of untreated and oleate-treated adipocytes shows oleate-dependent redistribution of TIP47 and adipophilin from cytosolic fractions to the lipid droplet fraction. Inhibition of protein synthesis with cycloheximide does not block the oleate-induced formation of the nascent lipid droplets, nor does it prevent TAG accumulation. We suggest that the non-lipid droplet pools of S3-12, adipophilin, and TIP47 constitute a ready reservoir of coat proteins to permit rapid packaging of newly synthesized triacylglycerol and to maximize energy storage during nutrient excess.  相似文献   

20.
Oxidation of low density lipoprotein (LDL) is the key step for the development of atherosclerosis. The 12/15-lipoxygenase expressed in macrophages is capable of oxygenating linoleic acid esterified to cholesterol in the LDL particle, and thus this enzyme is presumed to initiate LDL oxidation. We recently reported that LDL receptor-related protein (LRP) was required for the enzyme-mediated LDL oxidation by macrophages and suggested the selective uptake of cholesterol ester from LDL to the plasma membrane (Xu, W., Takahashi, Y., Sakashita, T., Iwasaki, T., Hattori, H., and Yoshimoto. T. (2001) J. Biol. Chem. 276, 36454-36459). To elucidate precise mechanisms of lipoxygenase-mediated LDL oxidation, we investigated the intracellular localization of 12/15-lipoxygenase. The 12/15-lipoxygenase was predominantly detected in cytosol of resting peritoneal macrophages and of macrophage-like J774A.1 cells permanently transfected with the cDNA for the enzyme. When the cells were treated with LDL and subjected to subcellular fractionation, the 12/15-lipoxygenase was detected in the membranes with a concomitant decrease in cytosol as shown by Western blot analysis. The levels of the enzyme associated with the membrane reached maximum in 15 min after LDL addition and then decreased. However, the enzymatic activity of 12/15-lipoxygenase in the membrane fraction was very weak even after LDL treatment. This fact supports the suicide inactivation of the enzyme by the oxygenation of cholesterol ester transferred from the LDL particle to the plasma membrane. Immunohistochemical analysis using an antibody against 12/15-lipoxygenase revealed that the plasma membrane was the major site of the enzyme translocation by the LDL treatment. LDL-dependent 12/15-lipoxygenase translocation was inhibited by a blocking antibody against LRP. Furthermore, an enzyme translocation inhibitor, L655238, inhibited the LDL oxidation caused by the 12/15-lipoxygenase. We propose that cholesterol ester selectively transferred from the LDL particle to the plasma membrane via LRP is oxygenated by 12/15-lipoxygenase translocated to this membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号