首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
PtKl cells were examined by surface scanning and transmission electron microscopy to determine the mechanism responsible for the ability of these cells to remain flat during mitosis. Bundles of tightly packed 80–100 Å filaments were seen to radiate from synthesis-and-organizing centers, and to terminate in desmosomes at the plasma membrane. In the presence of Colcemid or colchicine, cells beginning mitosis rounded up and the synthesis-and-organizing centers could no longer be found. In contrast, the occurrence of these structures in interphase cells treated with Colcemid or colchicine was increased. A cytoskeletal role for the 80–100 Å filaments is proposed.  相似文献   

2.
Summary The three-dimensional ultrastructural organization of the mitotic apparatus ofDimastigella mimosa was studied by computer-aided, serial-section reconstruction. The nuclear envelope remains intact during nuclear division. During mitosis, chromosomes do not condense, whereas intranuclear microtubules are found in close association with six pairs of kinetochores. No discrete microtubule-organizing centers, except kinetochore pairs, could be found within the nucleus. The intranuclear microtubules form six separate bundles oriented at different angles to each other. Each bundle contains up to 8 tightly packed microtubules which push the daughter kinetochores apart. At late anaphase only, midzones of these bundles align along an extended interzonal spindle within the narrow isthmus between segregating progeny nuclei. The nuclear division inD. mimosa can be described as closed intranuclear mitosis with acentric and separate microtubular bundles and weakly condensed chromosomes.Abbreviation MTOC microtubule-organizing center  相似文献   

3.
T E Kreis  B Geiger  E Schmid  J L Jorcano  W W Franke 《Cell》1983,32(4):1125-1137
Poly(A)+ RNA isolated from bovine muzzle epidermis was microinjected into nonepithelial cells containing only intermediate-sized filaments of the vimentin type. In recipient cells keratin polypeptides are synthesized and assemble into intermediate-sized filaments at multiple dispersed sites. We describe the time course and the pattern of de novo assembly of keratin filaments within living cells. These filaments were indistinguishable, by immunofluorescence and immunoelectron microscopic criteria, from keratin filament arrays present in true epithelial cells. The presence of extended keratin fibril meshworks in these injected cells is compatible with cell growth and mitosis. Double immunolabeling revealed that newly assembled keratin was not codistributed with microfilament bundles, microtubules or vimentin filaments. We suggest that assembly mechanisms exist which in vivo sort out newly synthesized cytokeratin polypeptides from vimentin.  相似文献   

4.
Antibody prepared against the 55,000 dalton subunit of reconstituted chick gizzard 100 A filaments (anti-G55K) bound to the 100 Å filaments of chick smooth muscle, cardiac muscle, and skeletal muscle cells, and to the 100 Å filaments of Schwann cells and satellite glial cells of the peripheral nervous system. Anti-G55K did not bind to replicating presumptive myoblasts, fibroblasts, chondroblasts, pigment cells, neurons, or to central nervous system glial cells. This contrasted with the wider range of binding of antibody to the 58,000 dalton subunit of chick fibroblast 100 A filaments (anti-F58K) which bound to the 100 Å filaments of all cell types examined except hepatocytes and skin epithelial cells. Anti-G55K staining revealed a morphologically distinct distribution of 100 A filaments in the three types of muscle cells. Spindle shaped smooth muscle cells exhibited dense fluorescent staining near the poles of the cells, and also exhibited unique patches of fluorescent material after cytochalasin B and Colcemid treatment. In myotubes, the fluorescence was limited to longitudinal bundles of filaments between the striated myofibrils. Cardiac cells contained uniformly distributed fine filaments. Lastly, smooth muscle cells in various phases of mitosis bound the anti-G55K, whereas replicating presumptive skeletal myoblasts failed to bind the anti-G55K.  相似文献   

5.
Role of spindle microtubules in the control of cell cycle timing   总被引:14,自引:10,他引:4       下载免费PDF全文
Sea urchin eggs are used to investigate the involvement of spindle microtubules in the mechanisms that control the timing of cell cycle events. Eggs are treated for 4 min with Colcemid at prophase of the first mitosis. No microtubules are assembled for at least 3 h, and the eggs do not divide. These eggs show repeated cycles of nuclear envelope breakdown (NEB) and nuclear envelope reformation (NER). Mitosis (NEB to NER) is twice as long in Colcemid-treated eggs as in the untreated controls. Interphase (NER to NEB) is the same in both. Thus, each cycle is prolonged entirely in mitosis. The chromosomes of treated eggs condense and eventually split into separate chromatids which do not move apart. This "canaphase" splitting is substantially delayed relative to anaphase onset in the control eggs. Treated eggs are irradiated after NEB with 366-nm light to inactivate the Colcemid. This allows the eggs to assemble normal spindles and divide. Up to 14 min after NEB, delays in the start of microtubule assembly give equal delays in anaphase onset, cleavage, and the events of the following cell cycle. Regardless of the delay, anaphase follows irradiation by the normal prometaphase duration. The quantity of spindle microtubules also influences the timing of mitotic events. Short Colcemid treatments administered in prophase of second division cause eggs to assemble small spindles. One blastomere is irradiated after NEB to provide a control cell with a normal-sized spindle. Cells with diminished spindles always initiate anaphase later than their controls. Telophase events are correspondingly delayed. This work demonstrates that spindle microtubules are involved in the mechanisms that control the time when the cell will initiate anaphase, finish mitosis, and start the next cell cycle.  相似文献   

6.
Origin of kinetochore microtubules in Chinese hamster ovary cells   总被引:3,自引:0,他引:3  
We have attempted to determine whether chromosomal microtubules arise by kinetochore nucleation or by attachment of pre-existing microtubules. The appearance of new microtubules was investigated in vivo on kinetochores to which microtubules had not previously been attached. The mitotic apparatus of Chinese hamster ovary cells was reconstructed in three dimensions from 0.25 m thick serial sections, and the location of chromosomes, kinetochore outer disks, centrioles, virus-like particles and microtubules determined. Central to the interpretation of these data is a synchronization scheme in which cells entered Colcemid arrest without forming mitotic microtubules. Cells were synchronized by the excess thymidine method and exposed to 0.3 g/ml Colcemid for 8 h. Electron microscopic examination showed that this Colcemid concentration eliminated all microtubules. Mitotic cells were collected by shaking off, and cell counts showed that over 95% of the cells were in interphase when treatment began and thus were arrested without the kinetochores having been previously attached to microtubules. Cells were then incubated in fresh medium and fixed for high voltage electron microscopy at intervals during recovery. — In early stages of recovery, short microtubules were observed near and in contact with kinetochores and surrounding centrioles. Microtubules were associated with kinetochores facing away from centrosomes and far from any centrosomal microtubules, and thus were not of centrosomal origin. At a later stage of recovery, long parallel bundles of microtubules, terminating in the kinetochore outer disk, extended from kinetochores both toward and away from centrosomes. Because microtubules had never been attached to kinetochores, the possibility that kinetochore microtubles were initiated by microtubule stubs resistant to Colcemid was eliminated. Therefore we conclude that mammalian kinetochores can initiate microtubules in vivo, thus serving as microtubule organizing centers for the mitotic spindle, and that formation of kinetochore-microtubule bundles is not dependent on centrosomal activity.  相似文献   

7.
Immunofluorescence microscopy has been used to follow the rearrangement of intermediate-sized filaments during mitosis in rat kangaroo PtK2 cells. These epithelial cells express two different intermediate filament systems: the keratin-related tonofilament-like arrays typical of epithelial cells, and the vimentin-type filaments characteristic of mesenchymal cells in vivo, and of many established cell lines. The two filament systems do not appear to depolymerize extensively during mitosis, but show differences in their organization and display which may indicate different functions. The most striking rearrangements have been seen with the vimentin filaments, and in particular in prometaphase a transient cage-like structure of vimentin fibers surrounding the developing spindle is formed. In metaphase, this cage disappears, and vimentin fibers are found in an elliptical band surrounding the chromosomes and the interzone. In telophase, these bands separate, usually breaking first on the side closest to where the cleavage furrow has started to form. Double label experiments with tubulin and vimentin antibodies have indicated that the microtubules and the chromosomes are contained within the thick crescents of vimentin filaments and suggest that the vimentin intermediate filaments may be involved in the orientation of the spindle and/or the chromosomes during mitosis. In contrast, extensive arrays of cytokeratin filaments are present throughout mitosis on the substrate-attached side of the cell and also in other cellular areas, although they are usually not present in the spindle region. Thus the cytokeratin filaments probably continue to play a cytoskeletal role during mitosis and may be responsible for the flat shape that certain epithelial cells such as PtK2 cells continue to maintain during mitosis.  相似文献   

8.
Endothelium lining the inner surface of vessels regulates permeability of vascular wall by providing exchange between blood circulation in vessels and tissue fluid and therefore performs a barrier function. Endothelial cells (ECs) in culture are able to maintain the barrier function peculiar to cells of vascular endothelium in vivo. The endothelial monolayer in vitro is a unique model system that allows studying interaction of cytoskeletal and adhesive structures of endotheliocytes from the earliest stages of its formation. In the present work, we described and quantitatively characterized the changes of EC cytoskeleton from the moment of spreading of endotheliocytes on glass and the formation of the first contacts between neighbor cells until formation of a functional confluent monolayer. The main type of intermediate filaments of ECs are vimentin filaments. At different stages of endothelial monolayer formation, disposition of vimentin filaments and their amount do not change essentially, they occupy more than 80% of the cell area. Actin filaments system of endotheliocytes is represented by cortical actin at the cell periphery and by bundles of actin stress fibers organized in parallel. With formation of contacts between cells in native endothelial cells, the number of actin filaments rises and thickness of their bundles increases. With formation of endothelial monolayer, there are also changes in the microtubules system—their number increases at the cell edge. At all stages of EC monolayer formation, the number of microtubules in the region of the already formed intercellular contacts exceeds the number of microtubules in the free lamella region of the cell.  相似文献   

9.
Treatment of HeLa cells with Colcemid at concentrations of 0.06-0.10 mug/ml leads to irreversible arrest in mitosis. Colcemid-arrested cells contained few microtubules, and many kinetochores and centrioles were free of microtubule association. When these cells were exposed to microtubule reassembly buffer containing Triton X-100 and bovine brain tubulin at 37 degrees C, numerous microtubules were reassembled at all kinetochores of metaphase chromosomes and in association with centriole pairs. When bovine brain tubulin was eliminated from the reassembly system, microtubules failed to assemble at these sites. Similarly, when EGTA was eliminated from the reassembly system, microtubules failed to polymerize. These results are consistent with other investigations of in vitro microtubule assembly and indicate that HeLa chromosomes and centrioles can serve as nucleating sites for the assembly of microtubules from brain tubulin. Both chromosomes and centrioles became displaced from their C-metaphase configurations during tubulin reassembly, indicating that their movements were a direct result of microtubule formation. Although both kinetochore- and centriole- associated microtubules were assembled and movement occurred, we did not observe direct extension of microtubules from kinetochores to centrioles. This system should prove useful for experimental studies of spindle microtubule formation and chromosome movement in mammalian cells.  相似文献   

10.
W E Gordon  A Bushnell  K Burridge 《Cell》1978,13(2):249-261
An antiserum has been found in a nonimmunized rabbit which reacts strongly with a system of filaments in various fibroblasts, epithelial cells, macrophages and neuroblastoma. These filaments are distinct from the actin microfilament bundles visualized by an antibody against actin, and they are not affected by brief treatment with cytochalasin B. The pattern of these filaments somewhat resembles that described for microtubules, but the filaments could be clearly distinguished from microtubules by a comparison of their respective immunofluorescent patterns during cell division. In response to the drugs colcemid and vinblastine, the filaments reacting with this preimmune serum condense to form a compact perinuclear coil of fibers, a distribution and behavior in agreement with that previously described for the 10 nm or intermediate filaments studied by electron microscopy. Further evidence supporting our conclusion that this antiserum reacts with intermediate filaments is provided by a comparison of electron micrographs and the immunofluorescent patterns from parallel cell cultures. To identify the antigens reacting with this antiserum we have used the new technique of immuno-autoradiography on SDS gels of whole cell extracts. Two reactive polypeptide chains have been identified with apparent molecular weights of 56,000 and 30,000 daltons.  相似文献   

11.
Small JV  Celis JE 《Cytobiologie》1978,16(2):308-325
Treatment of spread, cultured cells with Triton X-100 followed by negative staining reveals the organization of the unextracted intracellular filamentous elements: actin, microtubules and the 100 angstrom filaments. The present report describes the organization of the actin-like filaments in human skin fibroblasts and mouse 3 T 3 cells. As shown in earlier studies, the cytoplasmic stress fibres were seen to be composed of bundles of colinear actin-like filaments. In addition to these large stress fibres much smaller bundles of thin filaments as well as randomly oriented thin filaments were also observed. A thick bundle of thin filaments, 0.2 microm to 0.5 microm in diameter, was found to delimit the concave cell edges most prominent in well-spread stationary cells. The leading edge and ruffled border of human skin fibroblasts appeared as a broad web, of meshwork of diagonally oriented thin filaments interconnecting radiating, linear bundles of thin filaments about 0.1 microm in diameter. These bundles corresponding to the microspikes described earlier ranged from about 1.5 microm in length and were separated by 1 microm to 3 microm laterally. The leading edge of 3 T 3 cells showed a similar organization but with fewer radiating thin filament bundles. Both the filaments in the bundles and in the meshwork formed arrowhead complexes with smooth muscle myosin subfragment - 1 which were unipolar and directed towards the main body of the cell. The findings are discussed in relation to the mechanisms of non-muscle cell motility.  相似文献   

12.
Mitosis and intermediate-sized filaments in developing skeletal muscle   总被引:81,自引:54,他引:27       下载免费PDF全文
A new class of filaments intermediate in diameter between actin and myosin filaments has been demonstrated in skeletal muscle cells cultured from chick embryos. These filaments, which account for the majority of free filaments, average 100 A in diameter. They may run for more than 2 µ in a single section and can be distinguished in size and appearance from the thick and thin filaments assembled into myofibrils. The 100-A filaments are seen scattered throughout the sarcoplasm at all stages of development and show no obvious association with the myofibrils. The 100-A filaments are particularly conspicuous in myotubes fragmented by the mitotic inhibitors, colchicine and Colcemid. In addition, filaments similar in size and appearance to those found in myotubes are present in fibroblasts, chondrocytes, and proliferating mononucleated myoblasts. The 100-A filaments are present in cells arrested in metaphase by mitotic inhibitors. Definitive thick (about 150 A) or thin (about 60 A) myofilaments are not found in skeletal myogenic cells arrested in metaphase. Myogenic cells arrested in metaphase do not bind fluorescein-labeled antibody directed against myosin or actin. For these reasons, it is concluded that not all "thin" filaments in myogenic cells are uniquely associated with myogenesis.  相似文献   

13.
Sensory neurons from chick embryos were cultured on substrata that support neurite growth, and were fixed and prepared for both cytochemical localization of actin and electron microscopic observation of actin filaments in whole-mounted specimens. Samples of cells were treated with the detergent Triton X-100 before, during, or after fixation with glutaraldehyde to determine the organization of actin in simpler preparations of extracted cytoskeletons. Antibodies to actin and a fluorescent derivative of phallacidin bound strongly to the leading margins of growth cones, but in neurites the binding of these markers for actin was very weak. This was true in all cases of Triton X- 100 treatment, even when cells were extracted for 4 min before fixation. In whole-mounted cytoskeletons there were bundles and networks of 6-7-nm filaments in leading edges of growth cones but very few 6-7-n filaments were present among the microtubules and neurofilaments in the cytoskeletons of neurites. These filaments, which are prominent in growth cones, were identified as actin because they were stabilized against detergent extraction by the presence of phallacidin or the heavy meromyosin and S1 fragments of myosin. In addition, heavy meromyosin and S1 decorated these filaments as expected for binding to F-actin. Microtubules extended into growth cone margins and terminated within the network of actin filaments and bundles. Interactions between microtubule ends and these actin filaments may account for the frequently observed alignment of microtubules with filopodia at the growth cone margins.  相似文献   

14.
It was suggested recently that gastrulation movements in amphibian embryos are caused by the active cell locomotion of individual cells. In order to elucidate the role of microfilaments and microtubules in the cell locomotion occurring during gastrulation, cytochalasin B, colchicine, and other microtubule-disrupting drugs were injected into the blastocoel of early gastrulae of Xenopus laevis. Hypertonic solutions of sorbitol were also injected to elucidate the influence of the internal hydrostatic pressure on the migrating cells. The effects were examined in 1-μm Epon sections of serially fixed embryos and by transmission electron microscopy. Cytochalasin B strongly inhibits cell migration even under conditions that do not cause dissociation into single cells. The cells become round, and have only a few thin cell processes. Electron microscopy shows an alteration in the cortical microfilament network. Colchicine and other microtubule-disrupting drugs have little effect on the rate of cell migration before they cause the accumulation of many mitotic cells and the dissociation of the embryo. The interphase cells are angular and have thin processes like those in the control embryos. The microtubules disappear, and bundles of 10-nm filaments are observed in the cytoplasm of colchicine-injected embryos. Hypertonic sorbitol solutions strongly inhibit cell migration.  相似文献   

15.
When HeLa cells were grown in the presence of nitrous oxide (N2O) under pressure (80 lb/in2) mitosis was inhibited and the chromosomes displayed a typical colchicine metaphase (c-metaphase) configuration when examined by light microscopy. When the cells were returned to a 37°C incubator, mitosis was resumed and the cells entered G1 synchronously. Ultrastructural studies of N2O-blocked cells revealed a bipolar spindle with centriole pairs at each pole. Both chromosomal and interpolar (pole-to-pole) microtubules were also present. Thus, N2O, unlike most c-mitotic agents, appeared to have little or no effect upon spindle microtubule assembly. However, the failure of chromo somes to become properly aligned onto the metaphase plate indicated an impairment in normal prometaphase movement. The alignment of spindle microtubules was frequently atypical with some chromosomal microtubules extending from kinetochores to the poles, while others extended out at acute angles from the spindle axis. These ultrastructural studies indicated that N2O blocked cells at a stage in mitosis more advanced than that produced by Colcemid or other c-mitotic agents. Like Colcemid, however, prolonged arrest in mitosis with N2O led to an increased incidence of multipolar spindles.  相似文献   

16.
The role of the cytoskeleton in the regulation of chloroplast motility and positioning has been investigated by studying: (1) structural relationship of actin microfilaments, microtubules, and chloroplasts in cryofixed and freeze-substituted leaf cells of Arabidopsis; and (2) the effects of anti-actin (Latrunculin B; LAT-B) and anti-microtubule (Oryzalin) drugs on intracellular distribution of chloroplasts. Immunolabeling of leaf cells with two plant-actin specific antibodies, which react equivalently with all the expressed Arabidopsis actins, revealed two arrangements of actin microfilaments: longitudinal arrays of thick actin bundles and randomly oriented thin actin filaments that extended from the bundles. Chloroplasts were either aligned along the actin bundles or closely associated with the fine filaments. Baskets of actin microfilaments were also observed around the chloroplasts. The leaf cells labeled with an anti-tubulin antibody showed dense transverse arrays of cortical microtubules that exhibited no apparent association with chloroplasts. The application of LAT-B severely disrupted actin filaments and their association with chloroplasts. In addition, LAT-B induced aberrant aggregation of chloroplasts in the mesophyll and bundle sheath cells. Double labeling of LAT-B treated cells with anti-actin and anti-tubulin antibodies revealed that the microtubules in these cells were unaffected. Moreover, depolymerization of microtubules with Oryzalin did not affect the distribution of chloroplasts. These results provide evidence for the involvement of actin, but not tubulin, in the movement and positioning of chloroplasts in leaf cells. We propose that using motor molecules, some chloroplasts migrate along the actin cables directly, while others are pulled along the cables by the fine actin filaments. The baskets of microfilaments may anchor the chloroplasts during streaming and allow control over proper three-dimensional orientation to light.  相似文献   

17.
In response to externally applied shear stress, cultured endothelial monolayers develop prominent, axially-aligned, microfilamentous bundles, termed "stress fibers" (Dewey: Journal of Biomechanical Engineering 106:31-35, 1984; Franke et al.: Nature 81:570-580, 1984; Franke et al.: Klin. Wochenschr 64:989-992, 1986; Wechezak et al.: Laboratory Investigation 53:639-647, 1985). It is unclear, however, whether similar stress fibers develop in noncontiguous endothelial cells and whether these structures are necessary for adherence of individual cells under shear stress. It also is unknown what alterations occur in microtubules, intermediate filaments, and focal contacts as a consequence of shear stress. In this study, endothelial cells, free of intercellular contact, were exposed to 93 dynes/cm2 for 2 hr. With the aid of specific labeling probes and interference reflection microscopy, the distributional patterns of microfilaments, microtubules, intermediate filaments, and focal contacts were examined. Following shear stress, microfilament bundles and their associated focal contacts were concentrated in the proximal (relative to flow direction) cell regions. In contrast, microtubules were distributed uniformly within cell contours. Intermediate filaments displayed only an occasional tendency for accumulation at proximal edges. When cells were shear-tested in the presence of cytochalasin B to inhibit microfilament assembly, considerable cell loss occurred. Following inhibition of tubulin polymerization, no increase was observed in the percentage of cells lost due to shear over nontreated controls. Nocodazole-treated cells, however, were characterized by prominent stress fibers throughout the cell. These results indicate that stress fiber and focal contact reorganization represent major responses in isolated endothelial cells exposed to shear stress and that these cytoskeletal structures are necessary for adherence.  相似文献   

18.
The nucleoside analog 3'-deoxyadenosine (cordycepin) rapidly collapses the intermediate filaments into juxtanuclear caps in interphase fibroblasts and keratinocytes. A minimum of 80 micrograms/ml cordycepin or 20 micrograms/ml cordycepin in combination with 2 micrograms/ml of the deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenosine (EHNA) to inhibit its degradation is required to see these effects. This is the same concentration required for cordycepin to arrest cells at the onset of mitosis and depolymerize the microtubules to small asters. Cordycepin enters the cells rapidly and is phosphorylated to 3'-dATP with a concomitant drop in ATP levels. However, the direct reduction of ATP levels does not mimic the same rapid effects of cordycepin on either the intermediate filaments or microtubules. In addition, similar effects are not produced by a variety of other adenosine analogs with alterations in the 2'- and 3'-ribose positions. Although other pharmacological reagents result in alterations of the fibroblastic intermediate filaments, cordycepin is unusual because of the rapidity with which the fibroblastic intermediate filaments collapse into the juxtanuclear caps. The juxtanuclear caps have a morphology different from that of the perinuclear bundles of intermediate filaments that arise after long-term depolymerization of the microtubules. The keratin fibers in the epidermal cells retract to a perinuclear ring when treated with cordycepin.  相似文献   

19.
The cell cycle of the marine centric diatom Stephanopyxis turris consists of a series of spatially and temporally well-ordered events. We have used immunofluorescence microscopy to examine the role of cytoplasmic microtubules in these events. At interphase, microtubules radiate out from the microtubule-organizing center, forming a network around the nucleus and extending much of the length and breadth of the cell. As the cell enters mitosis, this network breaks down and a highly ordered mitotic spindle is formed. Peripheral microtubule bundles radiate out from each spindle pole and swing out and away from the central spindle during anaphase. Treatment of synchronized cells with 2.5 X 10(-8) M Nocodazole reversibly inhibited nuclear migration concurrent with the disappearance of the extensive cytoplasmic microtubule arrays associated with migrating nuclei. Microtubule arrays and mitotic spindles that reformed after the drug was washed out appeared normal. In contrast, cells treated with 5.0 X 10(-8) M Nocodazole were not able to complete nuclear migration after the drug was washed out and the mitotic spindles that formed were multipolar. Normal and multipolar spindles that were displaced toward one end of the cell by the drug treatment had no effect on the plane of division during cytokinesis. The cleavage furrow always bisected the cell regardless of the position of the mitotic spindle, resulting in binucleate/anucleate daughter cells. This suggests that in S. turris, unlike animal cells, the location of the plane of division is cortically determined before mitosis.  相似文献   

20.
Actin-Binding Proteins in Plant Cells   总被引:1,自引:0,他引:1  
Abstract: Actinoccurs in all plant cells, as monomers, filaments and filament assemblies. In interphase, actin filaments form a cortical network, co-align with cortical microtubules, and extend throughout the cytoplasm functioning in cytoplasmic streaming. During mitosis, they co-align with microtubules in the preprophase band and phragmoplast and are indispensa ble for cell division. Actin filaments continually polymerise and depolymerise from a pool of monomers, and signal transduction pathways affecting cell morphogenesis modify the actin cytoskeleton. The interactions of actin monomers and filaments with actin-binding proteins (ABP5) control actin dynamics. By binding to actin monomers, ABPs, such as profilin, regulate the pool of monomers available for polymerisation. By breaking filaments or capping filament ends, ABPs, such as actin depoly-merising factor (ADF), prevent actin filament elongation or loss of monomers from filament ends. By bivalent cross-linking to actin filaments, ABPs, such as fimbrin and other members of the spectrin family, produce a variety of higher order assemblies, from bundles to networks. The motor protein ABPs,. which are not covered in this review, move organelles along ac tin filaments. The large variety of ABPs share a number of functional modules. A plant representative of ABPs with particular modules, and therefore particular functions, is treated in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号