首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Wilms' tumour suppressor protein, WT1, is a zinc finger protein essential for the development of several organs, including the kidney and gonads. In each of these tissues WT1 is required at multiple stages of development and its persistent expression in podocytes and Sertoli cells suggests WT1 may also have a role in the maintenance of kidney and testis function throughout adult life. Naturally occurring isoforms of WT1 are generated by alternative mRNA splicing. An altered ratio of the splice isoforms WT1-KTS and WT1 + KTS appears to be sufficient to account for the developmental abnormalities (pseudohermaphroditism and nephropathy) characteristic of Frasier syndrome. We show that mice with a transgene encoding WT1-KTS do not differ from their wild-type littermates unless they are also heterozygous for a null mutation at the endogenous Wt1 locus. Animals with both genetic modifications develop proteinuria, together with multiple glomerular cysts, and male infertility. These pathologic changes may be explained as a consequence of altering the WT1 isoform ratio in tissues that express WT1 during adulthood. The results suggest WT1 misexpression could contribute to human glomerulocystic kidney disease.  相似文献   

3.
Transcriptional regulation by WT1 in development   总被引:3,自引:0,他引:3  
  相似文献   

4.
Wilms tumor and the WT1 gene   总被引:24,自引:0,他引:24  
  相似文献   

5.
6.
7.
The Wilms tumor protein WT1 is an essential factor for kidney development. In humans, mutations in WT1 lead to Wilms tumor, a pediatric kidney cancer as well as to developmental anomalies concerning the urogenital tract. Inactivation of Wt1 in mice causes multiple organ defects most notably agenesis of the kidneys. In zebrafish, two paralogous wt1 genes exist, wt1a and wt1b. The wt1 genes are expressed in a similar and overlapping but not identical pattern. Here, we have examined the role of both wt1 genes in early kidney development employing a transgenic line with pronephros specific GFP expression and morpholino knockdown experiments. Inactivation of wt1a led to failure of glomerular differentiation and morphogenesis resulting in a rapidly expanding general body edema. In contrast, knockdown of wt1b was compatible with early glomerular development. After 48 h, however, wt1b morphant embryos developed cysts in the region of the glomeruli and tubules and subsequent pericardial edema at 4 days post-fertilization. Thus, our data suggest different functions for wt1a and wt1b in zebrafish nephrogenesis. While wt1a has a more fundamental and early role in pronephros development and is essential for the formation of glomerular structures, wt1b functions at later stages of nephrogenesis.  相似文献   

8.
Nephroblastomas spontaneously developing in Japanese eel reared at farms for 5 to 9months after collection from the wild [Masahito et al., Cancer Res., 52 (1992) 2575-2579] were investigated to cast light on the role of Wilms' tumor 1 gene (WT1) in eel kidney tumorigenesis. Cloning of the WT1 counterpart, EWT1, revealed that conservation of an alternative splice II site, located between the third and fourth zinc fingers, was conserved. The zinc finger domain was highly conserved. The transregulator region, sequences corresponding to exons 4 and 5 in WT1, were lacking in EWT1 cDNA. EWT1 was found to be expressed in kidney, testis and spleen and in situ hybridization revealed dark-stained immature cells in elver kidney to be positive. Although no EWT1 gene mutations were found in 38 eel nephroblastomas, 26 polymorphic nucleic acid changes were observed. Aberrant WT1 expression was noted in epithelial (12 out of 27; 44%) and nephroblastic cell histological types (three out of five; 60%) of eel nephroblastomas. On in situ hybridization the EWT1 expressive cells resembled human blastema cells, similar to those in human Wilms' tumor. These data demonstrated strong signals that the EWT1 protein may function in the development of eel kidney and play a role in genesis of nephroblastomas as in mammals.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Glomerular podocytes are essential for blood filtration in the kidney underpinned by their unique cytoskeletal morphology. An increasing number of kidney diseases are being associated with key podocyte abnormalities. The Wilms tumour suppressor gene (WT1) encodes a zinc finger protein with a crucial role in normal kidney development; and in the adult, WT1 is required for normal podocyte function. Denys-Drash Syndrome (DDS) results from mutations affecting the zinc finger domain of WT1. The aim of this study was to undertake, for the first time, a proteomic analysis of cultured human podocytes; and to analyse the molecular changes in DDS podocytes. The morphology of DDS podocytes was highly irregular, reminiscent of a fibroblastic appearance. A reference 2-D gel was generated, and 75 proteins were identified of which 43% involved in cytoskeletal architecture. The DDS and wild-type proteomes were compared by 2-D DIGE. The level of 95.6% of proteins was unaltered; but 4.4% were altered more than two-fold. A sample of proteins involved in cytoskeletal architecture appeared to be misexpressed in DDS podocytes. Consistent with this finding, overall levels of filamentous actin also appeared reduced in DDS podocytes. We conclude that one of WT1 functions in podocytes is to regulate the expression of key components and regulators of the cytoskeleton.  相似文献   

16.
17.
Cilia are mechanosensing organelles that communicate extracellular signals into intracellular responses. Altered functions of primary cilia play a key role in the development of various diseases including polycystic kidney disease. Here, we show that endothelial cells from the oak ridge polycystic kidney (Tg737(orpk/orpk) ) mouse, with impaired cilia assembly, exhibit a reduction in the actin stress fibers and focal adhesions compared to wild-type (WT). In contrast, endothelial cells from polycystin-1 deficient mice (pkd1(null/null) ), with impaired cilia function, display robust stress fibers, and focal adhesion assembly. We found that the Tg737(orpk/orpk) cells exhibit impaired directional migration and endothelial cell monolayer permeability compared to the WT and pkd1(null/null) cells. Finally, we found that the expression of heat shock protein 27 (hsp27) and the phosphorylation of focal adhesion kinase (FAK) are downregulated in the Tg737(orpk/orpk) cells and overexpression of hsp27 restored both FAK phosphorylation and cell migration. Taken together, these results demonstrate that disruption of the primary cilia structure or function compromises the endothelium through the suppression of hsp27 dependent actin organization and focal adhesion formation, which may contribute to the vascular dysfunction in ciliopathies.  相似文献   

18.
19.
Mutations in the Wilms' tumor 1 gene, WT1, cause pediatric nephroblastoma and the severe genitourinary disorders of Frasier and Denys-Drash syndromes. High levels of WT1 expression are found in the developing kidney, uterus, and testis--consistent with this finding, the WT1 knockout mouse demonstrates that WT1 is essential for normal genitourinary development. The WT1 gene encodes multiple isoforms of a zinc finger-containing protein by a combination of alternative splicing and alternative translation initiation. The use of an upstream, alternative CUG translation initiation codon specific to mammals results in the production of WT1 protein isoforms with a 68-amino-acid N-terminal extension. To determine the function in vivo of mammal-specific WT1 isoforms containing this extension, gene targeting was employed to introduce a subtle mutation into the WT1 gene. Homozygous mutant mice show a specific absence of the CUG-initiated WT1 isoforms yet develop normally to adulthood and are fertile. Detailed histological analysis revealed normal development of the genitourinary system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号