首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Tazi-Saad  J Chariot  C Rozé 《Peptides》1992,13(2):233-239
Previous studies of the control of pepsin secretion by neurohumoral agents showed some discrepancies between in vitro (isolated cells) and in vivo experiments. In the present work, the effects on pepsin secretion of CCK, pentagastrin, secretin, VIP, neurotensin, histamine, and methacholine were reinvestigated in conscious gastric fistula rats, in comparison to acid secretion. ED50's and doses inducing maximal responses were measured to directly compare the potency and efficacy of these substances. Methacholine was the most efficient (maximal response = 4.5 x basal level, ED50 = 1.3 mumol/kg.h) and CCK the most potent (ED50 = 1.9 nmol/kg.h) stimulant, whereas secretin was a potent (ED50 regulators of pepsin secretion in the rat. Pentagastrin and histamine did not stimulate pepsin output, as found by others with isolated chief cells in vitro. Neurotensin and large doses of VIP marginally inhibited pepsin secretion.  相似文献   

2.
The effect of somatostatin 14 on gastric stimulation produced by secretin was determined in 6 conscious cats equipped with a gastric fistula and a denervated fundic pouch. Somatostatin strongly inhibited the basal and secretin-induced pepsin secretion. It did not, however, inhibit the secretin-induced mucus secretion, even though it decreased the basal mucus secretion. During somatostatin administration, the secretagogue effect of secretin on mucus secretion might be dissociated from its stimulatory action on pepsin secretion.  相似文献   

3.
Neurotensin stimulates pancreatic secretion directly and by potentiating the effect of secretin. Neurotensin also inhibits gastric secretion. Secretin inhibits gastric secretion as well, but whether it also interacts with neurotensin is not known. Secretin is known to inhibit gastric mucosal blood flow (GMBF). The effect of neurotensin on GMBF is not known. Acid secretion (triple lumen perfused orogastric tube) and GMBF ([14C]aminopyrine clearance) were therefore measured in 6 subjects during neurotensin, secretin and neurotensin plus secretin infusions. Neurotensin plus secretin reduced acid secretion by a median 130 (range 34-394) mumol/min which was significantly greater than either neurotensin at 36 (7-67) mumol/min or secretin 54 (20-347) mumol/min alone (P less than 0.05). This effect appeared independent of GMBF. Neurotensin plus secretin reduced GMBF by 14 (12-27) ml/min but not significantly more than neurotensin at 11 (3-20) ml/min or secretin 18 (2-27) ml/min alone. Further, there was no correlation between changes in acid output and GMBF during infusion of the peptides. We conclude that the inhibitory effects of neurotensin and secretin on gastric secretion are at least additive and together they may function as an 'enterogastrone'.  相似文献   

4.
The effect of secretin on acid and pepsin secretion and gastrin release in the totally isolated vascularly perfused rat stomach was studied. With the phosphodiesterase inhibitor isobutyl methylxanthine (IMX) added to the vascular perfusate, baseline acid secretion was 4.7 +/- 1.1 (mean +/- S.E.M.) mumol/h and baseline pepsin output 1147 +/- 223 micrograms/h. Secretin significantly inhibited acid output to a minimum of 1.4 +/- 0.2 mumol/h at a concentration of 25 pM in the vascular perfusate (P less than 0.01). Pepsin output was not significantly different from baseline at any of the secretin doses tested. Threshold secretin concentration for acid inhibition was 5 pM. IMX stimulated gastrin output from 48 +/- 9 pM in the basal state to 95 +/- 13 pM after IMX (P less than 0.01). Secretin inhibited gastrin release only at the maximal dose of 625 pM, when gastrin concentration in the venous effluent decreased from 93 +/- 19 to 68 +/- 19 pM after secretin. Thus, in the totally isolated vascularly perfused rat stomach secretin in physiological concentrations inhibits acid secretion by a direct action on the acid secretory process and not via gastrin inhibition. The study also suggests that gastrin release at least in part is mediated via increased intracellular cAMP.  相似文献   

5.
Previous studies have indicated that plasma levels of peptide YY (PYY) increase significantly after a meal. The purpose of this study was to characterize the interaction of PYY and secretin in the inhibition of gastric acid secretion, and to determine whether PYY can influence acid-induced inhibition of gastric acid secretion in conscious dogs. I.v. administration of PYY at 200 pmol/kg/h inhibited pentagastrin (1 microgram/kg/h)-stimulated gastric acid output (P less than 0.05). PYY further augmented i.v. secretin-induced inhibition of pentagastrin-stimulated gastric acid output by 32 +/- 7%, and intraduodenal hydrochloric acid-induced inhibition of pentagastrin-stimulated gastric acid output by 40 +/- 12%. The mean integrated release of secretin response to duodenal acidification (3.9 +/- 1.0 ng-[0-60] min/ml) was not affected by PYY (3.3 +/- 0.9 ng-[0-60] min/ml). The present study demonstrates that PYY can interact with secretin and duodenal acidification in an additive fashion to inhibit pentagastrin-stimulated gastric acid secretion. Our results suggest that several hormones that are released postprandially can interact with each other to inhibit gastric acid secretion.  相似文献   

6.
The gastric exocrine inhibitory activities of neurotensin were characterized in conscious cats prepared with gastric fistulae. Neurotensin was a potent inhibitor of pentagastrin-stimulated pepsin secretion (ID50, approx. 0.3 mumol . kg-1 . h-1) but was approximately 60 times less potent against acid secretion. Neurotensin did not significantly reduce submaximal histamine-stimulated acid or pepsin secretions. the total 2 h acid and pepsin outputs in response to insulin-hypoglycaemia were not reduced by neurotensin, although the peak 15-min outputs were reduced. The reduction in peak secretion was possibly related to neurotensin antagonism of the ability of insulin to lower blood glucose concentrations. Neurotensin alone was not hyperglycaemic when given as an intravenous infusion. Two C-terminal fragments of neurotensin, the dodecapeptide and nonapeptide, inhibited pentagastrin-stimulated pepsin secretion, but were less potent than neurotensin. The observations with the C-terminal fragments indicate that the major determinants of gastric exocrine inhibitory activity of neurotensin reside in its C-terminal; this agrees with observations on other biological activities of neurotensin. The reduced potency of the dodecapeptide indicates the importance of the N-terminal pyroglutamyl residue for full gastric exocrine inhibitory activity.  相似文献   

7.
The gastric effects of synthetic secretin given in a depot reparation as subcutaneous injection or in different doses as intravenous infusion were studied in 10 healthy volunteers. Peptone-stimulated gastric acid secretion and serum gastrin were significantly suppressed with a clear dose-response inhibition of acid output. There was a significant correlation between percentage inhibition of acid secretion and plasma secretin concentrations which were greatly above those seen physiologically. Serum lipase and trypsin increased significantly. Most subjects lost fluid from diuresis and diarrhoea, so that serum sodium and total protein concentrations also increased significantly. These side effects cast doubt on the clinical value of prolonged infusions of pharmacological doses of synthetic secretion in critically ill patients.  相似文献   

8.
The level of hypoglycaemia required to elicit gastric secretion of acid and pepsin was studied in urethane-anaesthetized rats. Hypoglycaemia was induced by intravenous injection of insulin or by electrical stimulation of the posterior hypothalamus. In each case the blood glucose values below which gastric secretion was stimulated were significantly higher for pepsin than for acid secretion. This consistently resulted in the onset of pepsin secretion in advance of the onset of acid secretion. These observations suggest that the production of the different components of the gastric juice was under the influence of either separate hypothalamic glucoreceptors, or a single set of glucoreceptors able to respond selectively to different blood glucose levels.  相似文献   

9.
The present status of our understanding of the feedback regulation of pancreatic secretion by peptide YY (PYY) released from the distal intestine is reviewed. Exocrine pancreatic secretion is primarily controlled by the cephalic (the vagus nerve), gastric (acid and pepsin secretion, and nutrients delivered into the duodenum by gastric emptying), and intestinal (secretin and CCK) mechanisms. PYY acts on the multiple sites in the brain and gut, and inhibits pancreatic secretion by regulating these primary control mechanisms. The involvement of Y(1) and Y(2) receptors has been suggested in the regulation of pancreatic secretion. However, it remains to be studied which site of action or receptor subtype is physiologically most important for this regulation.  相似文献   

10.
Pituitary adenylate cyclase-activating polypeptide (PACAP), existing in two variants, PACAP-27 and PACAP-38, is found in the enteric nervous system and regulates function of the digestive system. However, the regulatory mechanism of PACAP on gastric acid secretion has not been well elucidated. We investigated the inhibitory action of PACAP-27 on acid secretion and its mechanism in isolated vascularly perfused rat stomach. PACAP-27 in four graded doses (5, 10, 20, and 50 microg/h) was vascularly infused to determine its effect on basal and pentagastrin (50 ng/h)-stimulated acid secretion. To study the inhibitory mechanism of PACAP-27 on acid secretion, a rabbit antisecretin serum, antisomatostatin serum, or indomethacin was administered. Concentrations of secretin, somatostatin, PGE(2), and histamine in portal venous effluent were measured by RIA. PACAP-27 dose-dependently inhibited both basal and pentagastrin-stimulated acid secretion. PACAP-27 at 10 microg/h significantly increased concentrations of secretin, somatostatin, and PGE(2) in basal or pentagastrin-stimulated state. The inhibitory effect of PACAP-27 on pentagastrin-stimulated acid secretion was reversed 33% by an antisecretin serum, 80.0% by an antisomatostatin serum, and 46.1% by indomethacin. The antisecretin serum partially reduced PACAP-27-induced local release of somatostatin and PGE(2). PACAP-27 at 10 microg/h elevated histamine level in portal venous effluent, which was further increased by antisomatostatin serum. However, antisomatostatin serum did not significantly increase acid secretion. It is concluded that PACAP-27 inhibits both basal and pentagastrin-stimulated gastric acid secretion. The effect of PACAP-27 is mediated by local release of secretin, somatostatin, and PGE(2) in isolated perfused rat stomach. The increase in somatostatin and PGE(2) levels in portal venous effluent is, in part, attributable to local action of the endogenous secretin.  相似文献   

11.
It is well established that duodenal acidification strongly inhibits gastric acid secretion, gastric emptying rate and gastrin release. These effects are at least partly mediated via hormonal pathways, but it is not known whether they are mediated by the release of one peptide named in the past enterogastrone, or by several peptides acting together. The effects of duodenal acidification on gastric acid secretion and gastrin release can be reproduced by infusion of small doses of secretin and plasma secretin levels increase during duodenal acidification or after a meal. This peptide is thus the most probable candidate as an enterogastrone. It has however never been clearly shown that administration of low doses of secretin do decrease gastric emptying rate as well as acid secretion. Experiments were performed on four dogs with gastric fistulas. A peptone solution was infused into the stomach. The experiments were repeated during infusion of synthetic secretin. Our results indicate that infusion of low doses of secretin reproduce all the effects of duodenal acidification: a significant inhibition of gastric acid secretion, gastrin release and gastric emptying rate.  相似文献   

12.
The effects of FCE 20700, a new prostaglandin E2 analogue, on gastric acid and pepsin secretion stimulated by different secretagogues were studied in dogs. Intravenous FCE 20700 produced a significant inhibition of total acid output (TAO) induced by pentagastrin or histamine in gastric fistula (GF) dogs. This effect was short-lasting and mainly due to a reduction in the volume of gastric juice with little acid concentration change. TAO and pepsin output stimulated by 2-deoxy-D-glucose were simililarly inhibited by intravenous FCE 20700. In dogs chronically fitted with both GF and Heidenhain pouch (HP), intragastric FCE 20700 significantly inhibited TAO stimulated by pentagastrin or histamine from HP, while acid secretion from GF was not significantly affected. It is concluded that FCE 20700 possesses a weak antisecretory activity in dogs. Consequently the antiulcer effects of this prostaglandin derivative seem to be largely independent from its influence on gastric acid and pepsin secretion.  相似文献   

13.
14.
A secretin releasing peptide exists in dog pancreatic juice   总被引:1,自引:0,他引:1  
Li P  Song Y  Lee KY  Chang TM  Chey WY 《Life sciences》2000,66(14):1307-1316
Canine pancreatic juice has been shown to stimulate exocrine pancreatic secretion in the dog. In the present study we investigated whether there is a secretin-releasing peptide in canine pancreatic juice. Pancreatic juice was collected from the dogs with Thomas gastric and duodenal cannulas while pancreatic secretion was stimulated by intravenous administration of secretin at 0.5 microg/kg/h and CCK-8 at 0.2 microg/kg/h, respectively. The pancreatic juice was separated into three different molecular weight (MW) fractions (Fr) by ultrafiltration (Fr 1; MW > 10,000, Fr 2; MW=10,000-4,000 and Fr 3; MW < 4,000), respectively. All the fractions were bioassayed in anesthetized rats. Fraction 3 dose-dependently and significantly stimulated pancreatic juice flow volume from 78.0% to 99.4% (p<0.05) and bicarbonate output from 128.9% to 202.1% (p<0.01), respectively. Plasma secretin concentration also increased from 1.2 +/- 0.5 pM to 5.0 +/- 0.8 pM and 6.0 +/- 1.0 pM (p<0.05). None of these fractions increased pancreatic protein secretion or plasma CCK level. The stimulatory effect of Fraction 3 on pancreatic secretion and the release of secretin was completely abolished by treatment with trypsin (1 mg/ml for 60 min at 37 degrees C) but not by heating (100 degrees C, 10 min). Intravenous injection of a rabbit anti-secretin serum, which rendered plasma secretin almost undetectable in rat plasma, also abolished Fr 3-stimulated pancreatic secretion of fluid and bicarbonate secretion. These observations suggest that a secretin-releasing peptide exists in the canine pancreatic juice. It is trypsin-sensitive and heat-resistant. This peptide may play a significant physiological role on the release of secretin and regulation of exocrine pancreatic secretion.  相似文献   

15.
Only one secretin receptor has been cloned and its properties characterized in native and transfected cells. To test the hypothesis that stimulatory and inhibitory effects of secretin are mediated by different secretin receptor subtypes, pancreatic and gastric secretory responses to secretin and secretin-Gly were determined in rats. Pancreatic fluid secretion was increased equipotently by secretin and secretin-Gly, but secretin was markedly more potent for inhibition of basal and gastrin-induced acid secretion. In Chinese hamster ovary cells stably transfected with the rat secretin receptor, secretin and secretin-Gly equipotently displaced (125)I-labeled secretin (IC(50) values 5.3 +/- 0.5 and 6.4 +/- 0.6 nM, respectively). Secretin, but not secretin-Gly, caused release of somatostatin from rat gastric mucosal D cells. Thus the equipotent actions of secretin and secretin-Gly on pancreatic secretion appear to result from equal binding and activation of the pancreatic secretin receptor. Conversely, secretin more potently inhibited gastric acid secretion in vivo, and only secretin released somatostatin from D cells in vitro. These results support the existence of a secretin receptor subtype mediating inhibition of gastric acid secretion that is distinct from the previously characterized pancreatic secretin receptor.  相似文献   

16.
The effects of met-enkephalin and morphine on gastric acid and pepsin secretion and gastric mucosal and total blood flow were studied in anaesthetized dogs with an in vivo chambered secretion stomach preparation. It was found that both agents infused intraarterially caused an increase in histamine-induced acid and pepsin secretion and mucosal and total blood flow. The above responses were significantly blocked by naloxone and nalorphine. In the resting stomach both opiates did not induce secretory changes but they increased mucosal and total blood flow. Met-enkephalin and morphine were also effective after intravenous administration. Met-enkephalin but not morphine fails to stimulate acid secretion if given into the portal vein. The likely mechanism of action of opiates on gastric secretion is discussed and a hypothesis of existence of opiate receptors in the gastric wall is presented.  相似文献   

17.
The effects of cimetidine on plasma secretin were studied during prolonged fasting in order to determine whether gastric acid output influences secretin release under these circumstances. Twenty healthy volunteers starved for 36 h and were refed with oral glucose. They were given placebo or cimetidine (1.6 g daily) for 24 h before and during the starvation period. After 12 h fasting plasma secretin like immunoreactivity (SLI) was lower (P less than 0.02) in the cimetidine group than in the placebo group. After 36 h plasma SLI was higher (P less than 0.001) in both groups compared to the 12 h value but there was no statistically significant difference between the 2 groups. Refeeding caused prompt suppression of plasma SLI in both groups. Plasma gastrin was lower (P less than 0.001) after 36 h than 12 h in the placebo group only, but there was no significant difference between the groups. Blood glycerol (P less than 0.01) and 3 hydroxybutyrate (P less than 0.02) concentrations were higher after 36 h than after 12 h fasting in both groups. During fasting, sufficient to cause mobilisation of fat and ketosis, cimetidine failed to suppress plasma SLI. This may be due to inadequate suppression of gastric acid output or to some alternative stimulus to secretin release during fasting.  相似文献   

18.
Pancreatico-biliary secretion is reduced during acute hyperglycemia. We investigated whether alterations in pancreatico-biliary flow or volume output are responsible for the observed reduction in duodenal output of pancreatic enzymes and bilirubin during hyperglycemia. Eight healthy subjects were studied on two occasions during normoglycemia and hyperglycemia (15 mmol/l). Pancreatico-biliary output was measured by aspiration using a recovery marker under basal conditions (60 min), during secretin infusion (0.1 CU/kg.h) for 60 min and during secretin + CCK (0.5 IDU/kg.h) infusion for 60 min. Secretin was infused to stimulate pancreatico-biliary flow and volume output. Secretin significantly (P<0.005-P<0.05) increased volume and bicarbonate output and CCK significantly (P<0.01) increased the output of bilirubin, pancreatic enzymes, bicarbonate and volume, both during normoglycemia and hyperglycemia. During hyperglycemia basal, secretin stimulated and secretin + CCK stimulated total pancreatico-biliary output were significantly (P<0.005-P<0.05) reduced compared to normoglycemia. The incremental outputs, however, were not significantly different between hyper- and normoglycemia. Pancreatic volume output was significantly (P<0.05) reduced during hyperglycemia compared to normoglycemia under basal conditions (31+/-16 m/h versus 132+/-33 m/h) during secretin infusion (130+/-17 ml/h versus 200+/-34 m/h) and during secretin + CCK infusion (370+/-39 ml/h versus 573+/-82 ml/h). Plasma PP levels were significantly (P<0.05) reduced during hyperglycemia. It is concluded that 1) hyperglycemia significantly reduces basal pancreatico-biliary output 2) the incremental pancreaticobiliary output in response to secretin or secretin + CCK infusion is not significantly affected during hyperglycemia, 3) a reduction in volume output contributes to the inhibitory effect of hyperglycemia on pancreatico-biliary secretion, 4) hyperglycemia reduces PP secretion suggesting vagal-cholinergic inhibition of pancreatico-biliary secretion and volume during hyperglycemia.  相似文献   

19.
The effects of intracerebroventricular (ICV) injections of avian pancreatic polypeptide (APP) on food intake, gizzard motility, gastric secretion volume, pH, and pepsin concentration was investigated using 16-20-week-old Single-Comb White Leghorn hens. Birds were stereotaxically cannulated in the right lateral ventricle. In addition, a strain gauge was attached to the gizzard to measure motility and a polyethylene cannula was implanted into the caudoventral margin of the proventriculus to collect glandular secretions. All birds were fasted for 18 hr prior to the injection of APP. In Experiment 1 food was made available immediately following the injection of APP while in Experiment 2 food was withheld for an additional one hr post-injection. The ICV injection of APP significantly increased food intake but had no significant effect on gizzard motility, gastric secretion volume, pH, or pepsin concentration in birds given access to food immediately after injection. In birds which remained fasted after injection, pepsin concentration was decreased by APP injection, but gizzard motility, gastric secretion volume, and pH were not affected. Because ICV injections of APP significantly increased food intake and, in fasted birds, decreased pepsin concentration, it appears that APP is involved in the central nervous system control of food intake and pepsin secretion in the domestic fowl.  相似文献   

20.
Sorbin, a 153 amino acid polypeptide isolated from porcine upper small intestine and its shortest synthetic derivative, the C-terminal heptapeptide (C7-sorbin), substituted by D alaninamide in the last position (D7-sorbin), have proabsorptive and antisecretory effect in the different parts of the intestine. We showed that labeled C7-sorbin accumulated not only in the enterocytes and the enteric nervous system but also in the gastric chief cells in the rat. The chief cell secretion of pepsin was then studied in two other species, the cat and the rabbit, simultaneously with the acid secretion of parietal cells. Lipase secretion was studied in the rabbit because lipase is exclusively secreted by the upper cells of the fundic glands, which do not secrete pepsin. The animals were equipped with a gastric fistula, fully innervated, and a Heidenhain pouch, vagally denervated, during a continuous perfusion of pentagastrin (PG) 2 microg/kg. h and vasoactive intestinal peptide (VIP) 4 microg/kg. h. D7-sorbin (100 pmol/kg. h) inhibited cat and rabbit pepsin secretion from the innervated gastric fistula secretion and from the cat denervated Heidenhain pouc secretion, but was without effect on acid secretion and lipase secretion. These data indicate that the inhibitory effect of sorbin is specific on chief cells because the acid parietal cell secretion in both species and lipase upper cell secretion of the fundic glands, in the rabbit, are not implicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号