首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report an optimized synthesis of all canonical 2'-O-TOM protected ribonucleoside phosphoramidites and solid supports containing [13C5]-labeled ribose moieties, their sequence-specific introduction into very short RNA sequences and their use for the structure determination of two protein-RNA complexes. These specifically labeled sequences facilitate RNA resonance assignments and are essential to assign a high number of sugar-sugar and intermolecular NOEs, which ultimately improve the precision and accuracy of the resulting structures. This labeling strategy is particularly useful for the study of protein-RNA complexes with single-stranded RNA in solution, which is rapidly an increasingly relevant research area in biology.  相似文献   

2.
Protein–protein interactions have been widely used to study gene expression pathways and may be considered as a new approach to drug discovery. Here I report the development of a universal protein array (UPA) system that provides a sensitive, quantitative, multi-purpose, effective and easy technology to determine not only specific protein–protein interactions, but also specific interactions of proteins with DNA, RNA, ligands and other small chemicals. (i) Since purified proteins are used, the results can be easily interpreted. (ii) UPA can be used multiple times for different targets, making it economically affordable for most laboratories, hospitals and biotechnology companies. (iii) Unlike DNA chips or DNA microarrays, no additional instrumentation is required. (iv) Since the UPA uses active proteins (without denaturation and renaturation), it is more sensitive compared with most existing methods. (v) Because the UPA can analyze hundreds (even thousands on a protein microarray) of proteins in a single experiment, it is a very effective method to screen proteins as drug targets in cancer and other human diseases.  相似文献   

3.
An analysis of cavities present in protein–DNA and protein–RNA complexes is presented. In terms of the number of cavities and their total volume, the interfaces formed in these complexes are akin to those in transient protein–protein heterocomplexes. With homodimeric proteins protein–DNA interfaces may contain cavities involving both the protein subunits and DNA, and these are more than twice as large as cavities involving a single protein subunit and DNA. A parameter, cavity index, measuring the degree of surface complementarity, indicates that the packing of atoms in protein–protein/DNA/RNA is very similar, but it is about two times less efficient in the permanent interfaces formed between subunits in homodimers. As within the tertiary structure and protein–protein interfaces, protein–DNA interfaces have a higher inclination to be lined by β-sheet residues; from the DNA side, base atoms, in particular those in minor grooves, have a higher tendency to be located in cavities. The larger cavities tend to be less spherical and solvated. A small fraction of water molecules are found to mediate hydrogen-bond interactions with both the components, suggesting their primary role is to fill in the void left due to the local non-complementary nature of the surface patches.  相似文献   

4.
The spectroscopic and functional characterization of 13C-labeled synthetic melittin and three analogues is described. Selectively 13C-enriched tryptophan ( [13C delta 1]-L-Trp) and glycine ( [13C alpha]Gly) were incorporated into melittin and three analogues by de novo peptide synthesis. 13C-Labeled tryptophan was incorporated into melittin at position 19 and into single-tryptophan analogues of melittin at positions 17, 11, and 9, respectively. Each of the synthetic peptides contained 13C-labeled glycine at position 12 only. The peptides were characterized functionally in a cytolytic assay, and spectroscopically by CD, fluorescence, and NMR. The behavior of 13C-labeled synthetic melittin was, in all respects, indistinguishable from that of the naturally occurring peptide. All of the analogues were found to be efficient lytic agents and thus were functionally similar to the native peptide, yet no evidence was found for formation of a melittin-like tetramer by any of the analogues in aqueous media, although there was a propensity for apparently nonspecific peptide aggregation, especially for MLT-W9. Since the analogues did exhibit fractional helicities by CD comparable to or even greater than melittin itself in the presence of methanol, we infer that tetramer assembly requires not only the ability to form alpha-helix but also a very precise packing of amino acid side chains of the constituent monomers. The 13C chemical shift of the Gly-12 C alpha was found to be a sensitive marker for helix formation in all of the peptides. For melittin itself, 13C NMR spectra revealed a downfield shift of approximately 1.8 ppm for the Gly-12 13C alpha resonance of the tetramer relative to that observed for the free monomer in D2O. In mixed samples containing melittin monomer and tetramer, two discrete Gly-12 13C alpha peaks were observed simultaneously, suggestive of slow exchange between the two species. We conclude that melittin's ability to form a soluble tetramer is not a prerequisite for cytolytic activity, nor is cytolytic potential precisely correlated with the ability to form an amphiphilic helix.  相似文献   

5.
In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of 13C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly 13C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-13C)-sucrose, 342 Da] and one compound of medium molecular weight (13C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The 13C resonances are traced using 13C–13C correlations from homonuclear experiments, such as (H)CC–CT–COSY, (H)CC–NOESY, CC–CT–TOCSY and/or virtually decoupled (H)CC–TOCSY. Based on the assignment of the 13C resonances, the 1H chemical shifts are derived in a straightforward manner using one-bond 1H–13C correlations from heteronuclear experiments (HC–CT–HSQC). In order to avoid the 1 J CC splitting of the 13C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either 13C or 1H detected experiments, namely CC–CT–COSY, band-selective (H)CC–TOCSY, HC–CT–HSQC–NOESY or long-range HC–CT–HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the 1H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the 13C-enriched polysaccharide were assigned by using HC–H2BC spectra. The assignment of the N-acetyl groups with 15N at natural abundance was completed by using HN–SOFAST–HMQC, HNCA, HNCO and 13C-detected (H)CACO spectra.  相似文献   

6.
The H3'-C3'-C4'-H4' torsional angles of two microcrystalline 2'-deoxynucleosides, thymidine and 2'-deoxycytidine.HCl, doubly (13)C-labeled at the C3' and C4' positions of the sugar ring, have been measured by solid-state magic-angle-spinning nuclear magnetic resonance (NMR). A double-quantum heteronuclear local field experiment with frequency-switched Lee-Goldberg homonuclear decoupling was used. The H3'-C3'-C4'-H4' torsional angles were obtained by comparing the experimental curves with numerical simulations, including the two (13)C nuclei, the directly bonded (1)H nuclei, and five remote protons. The H3'-C3'-C4'-H4' angles were converted into sugar pucker angles and compared with crystallographic data. The delta torsional angles determined by solid-state NMR and x-ray crystallography agree within experimental error. Evidence is also obtained that the proton positions may be unreliable in the x-ray structures. This work confirms that double-quantum solid-state NMR is a feasible tool for studying sugar pucker conformations in macromolecular complexes that are unsuitable for solution NMR or crystallography.  相似文献   

7.
Yunhui Peng  Emil Alexov 《Proteins》2017,85(2):282-295
Protein–nucleic acid interactions play a crucial role in many biological processes. This work investigates the changes of pKa values and protonation states of ionizable groups (including nucleic acid bases) that may occur at protein–nucleic acid binding. Taking advantage of the recently developed pKa calculation tool DelphiPka, we utilize the large protein–nucleic acid interaction database (NPIDB database) to model pKa shifts caused by binding. It has been found that the protein's interfacial basic residues experience favorable electrostatic interactions while the protein acidic residues undergo proton uptake to reduce the energy cost upon the binding. This is in contrast with observations made for protein–protein complexes. In terms of DNA/RNA, both base groups and phosphate groups of nucleotides are found to participate in binding. Some DNA/RNA bases undergo pKa shifts at complex formation, with the binding process tending to suppress charged states of nucleic acid bases. In addition, a weak correlation is found between the pH‐optimum of protein–DNA/RNA binding free energy and the pH‐optimum of protein folding free energy. Overall, the pH‐dependence of protein–nucleic acid binding is not predicted to be as significant as that of protein–protein association. Proteins 2017; 85:282–295. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Synthesis and NMR spectra of 13C-labeled coenzyme A esters   总被引:1,自引:0,他引:1  
The synthesis of coenzyme A thioesters of 13C-labeled acetate, propionate, succinate, and methyl malonate is described. The average yields were 94%. The 13C-NMR spectra were determined to provide a reference for the resonance positions of these metabolites. The synthesis of coenzyme thioesters of small-molecular-weight acids labeled with 13C has not been described previously, nor have the resonance positions been previously reported.  相似文献   

9.
Heat shock protein 70 (Hsp70) is a molecular chaperone and central regulator of protein homeostasis (proteostasis). Paramount to this role is Hsp70’s binding to client proteins and co-chaperones to produce distinct complexes, such that understanding the protein–protein interactions (PPIs) of Hsp70 is foundational to describing its function and dysfunction in disease. Mounting evidence suggests that these PPIs include both “canonical” interactions, which are universally conserved, and “non-canonical” (or “secondary”) contacts that seem to have emerged in eukaryotes. These two categories of interactions involve discrete binding surfaces, such that some clients and co-chaperones engage Hsp70 with at least two points of contact. While the contributions of canonical interactions to chaperone function are becoming increasingly clear, it can be challenging to deconvolute the roles of secondary interactions. Here, we review what is known about non-canonical contacts and highlight examples where their contributions have been parsed, giving rise to a model in which Hsp70’s secondary contacts are not simply sites of additional avidity but are necessary and sufficient to impart unique functions. From this perspective, we propose that further exploration of non-canonical contacts will generate important insights into the evolution of Hsp70 systems and inspire new approaches for developing small molecules that tune Hsp70-mediated proteostasis.  相似文献   

10.
This paper presents a 13C CP/MAS NMR study of the melanin pigments obtained through natural synthetic origins: sepia-melanin from squid ink and three synthetic 5,6-dihydroxyindole-melanins prepared using different non-enzymatic oxidation pathways. The synthetic pigments can be distinguished from natural melanin by the absence of aliphatic carbons, thereby confirming the unreacted 3,4-dihydroxyphenylalanine and the proteinaceous origins of the aliphatic resonances in natural eumelanin. The spectra of selected non-protonated carbon resonances and those with only protonated carbon signals led to a quantitative analysis. An auto-oxidative experiment using a synthetic melanin, over a period of 130 h, has shown an usually slow disappearance of hydrogen peroxide formed in situ. The 13C-NMR spectrum of the insoluble oxidized synthetic melanin compared to that before auto-oxidation clearly demonstrates that the oxidation process is associated with chemical changes within the pigment; i.e., carbonyl functional group formation and an increase of the non-protonated carbons fraction.  相似文献   

11.
12.
Intrinsically disordered proteins and intrinsically disordered regions are frequently enriched in charged amino acids. Intrinsically disordered regions are regularly involved in important biological processes in which one or more charged residues is the driving force behind a protein-biomolecule interaction. Several lines of experimental and computational evidence suggest that polypeptides and proteins that carry high net charges have a high preference for extended conformations with average end-to-end distances exceeding expectations for self-avoiding random coils. Here, we show that charged arginine residues even in short glycine-capped model peptides (GRRG and GRRRG) significantly affect the conformational propensities of each other when compared with the intrinsic propensities of a mostly unperturbed arginine in the tripeptide GRG. A conformational analysis based on experimentally determined J-coupling constants from heteronuclear NMR spectroscopy and amide I′ band profiles from vibrational spectroscopy reveals that nearest-neighbor interactions stabilize extended β-strand conformations at the expense of polyproline II and turn conformations. The results from molecular dynamics simulations with a CHARMM36m force field and TIP3P water reproduce our results only to a limited extent. The use of the Ramachandran distribution of the central residue of GRRRG in a calculation of end-to-end distances of polyarginines of different length yielded the expected power law behavior. The scaling coefficient of 0.66 suggests that such peptides would be more extended than predicted by a self-avoiding random walk. Our findings thus support in principle theoretical predictions.  相似文献   

13.
Summary New 2D and 3D 1H-13C-15N triple resonance experiments are presented which allow unambiguous assignments of intranucleotide H1'-H8(H6) connectivities in 13C-and 15N-labeled RNA oligonucleotides. Two slightly different experiments employing double INEPT forward and back coherence transfers are optimized to obtain the H1'-C1'-N9/N1 and H8/H6-C8/C6-N9/N1 connectivities, respectively. The correlation of H1' protons to glycosidic nitrogens N9/N1 is obtained in a nonselective fashion. To correlate H8/H6 with their respective glycosidic nitrogens, selective 13C-refocusing and 15N-inversion pulses are applied to optimize the magnetization transfers along the desired pathway. The approach employs the heteronuclear one-bond spin-spin interactions and allows the 2D 1H-15N and 3D1H-13C-15N chemical shift correlation of nuclei along and adjacent to the glycosidic bond. Since the intranucleotide correlations obtained are based exclusively on through-bond scalar interactions, these experiments resolve the ambiguity of intra-and internucleotide H1'-H8(H6) assignments obtained from the 2D NOESY spectra. These experiments are applied to a 30-base RNA oligonucleotide which contains the binding site for Rev protein from HIV.  相似文献   

14.
Three‐dimensional protein structure determination is a costly process due in part to the low success rate within groups of potential targets. Conventional validation methods eliminate the vast majority of proteins from further consideration through a time‐consuming succession of screens for expression, solubility, purification, and folding. False negatives at each stage incur unwarranted reductions in the overall success rate. We developed a semi‐automated protocol for isotopically‐labeled protein production using the Maxwell‐16, a commercially available bench top robot, that allows for single‐step target screening by 2D NMR. In the span of a week, one person can express, purify, and screen 48 different 15N‐labeled proteins, accelerating the validation process by more than 10‐fold. The yield from a single channel of the Maxwell‐16 is sufficient for acquisition of a high‐quality 2D 1H‐15N‐HSQC spectrum using a 3‐mm sample cell and 5‐mm cryogenic NMR probe. Maxwell‐16 screening of a control group of proteins reproduced previous validation results from conventional small‐scale expression screening and large‐scale production approaches currently employed by our structural genomics pipeline. Analysis of 18 new protein constructs identified two potential structure targets that included the second PDZ domain of human Par‐3. To further demonstrate the broad utility of this production strategy, we solved the PDZ2 NMR structure using [U15N,13C] protein prepared using the Maxwell‐16. This novel semi‐automated protein production protocol reduces the time and cost associated with NMR structure determination by eliminating unnecessary screening and scale‐up steps.  相似文献   

15.
《Nucleic acids research》2020,48(22):12415
The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5′ end, the ribosomal frameshift segment and the 3′-untranslated region (3′-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.  相似文献   

16.
17.
18.
19.
Base-specific spin-labeling of RNA for structure determination   总被引:1,自引:1,他引:0  
To facilitate the measurement of intramolecular distances in solvated RNA systems, a combination of spin-labeling, electron paramagnetic resonance (EPR), and molecular dynamics (MD) simulation is presented. The fairly rigid spin label 2,2,5,5-tetramethyl-pyrrolin-1-yloxyl-3-acetylene (TPA) was base and site specifically introduced into RNA through a Sonogashira palladium catalyzed cross-coupling on column. For this purpose 5-iodo-uridine, 5-iodo-cytidine and 2-iodo-adenosine phosphoramidites were synthesized and incorporated into RNA-sequences. Application of the recently developed ACE® chemistry presented the main advantage to limit the reduction of the nitroxide to an amine during the oligonucleotide automated synthesis and thus to increase substantially the reliability of the synthesis and the yield of labeled oligonucleotides. 4-Pulse Electron Double Resonance (PELDOR) was then successfully used to measure the intramolecular spin–spin distances in six doubly labeled RNA-duplexes. Comparison of these results with our previous work on DNA showed that A- and B-Form can be differentiated. Using an all-atom force field with explicit solvent, MD simulations gave results in good agreement with the measured distances and indicated that the RNA A-Form was conserved despite a local destabilization effect of the nitroxide label. The applicability of the method to more complex biological systems is discussed.  相似文献   

20.
A 2D-NMR method based on zero-quantum filtered (ZQF-) TOtal Correlation SpectroscopY (TOCSY) was applied to measure 13C-enrichments in complex mixtures of 13C-labeled metabolites generated in carbon-labeling experiments. Using ZQF-TOCSY, more than 30 13C-enrichments could be potentially measured from the analysis of a biomass hydrolyzate prepared from Escherichia coli cells grown on a mixture of 20% [U-13C]-glucose and 80% [1-13C]-glucose, without need for separation of metabolites. The method is applicable to biomass hydrolyzates, cell extracts, and other complex biological samples. It is also applicable to any combination of labeled substrates and provides a basis for examining non-steady-state conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号