首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Phonotactic responses ofTeleogryllus oceanicus were studied with two methods. Tethered crickets were stimulated with sound while they performed stationary flight, and steering responses were indicated by abdominal movements. Walking crickets tracked a sound source while their translational movements were compensated by a spherical treadmill, and their walking direction and velocity were recorded.During both flight and walking, crickets attempted to locomote towards the sound source when a song model with 5 kHz carrier frequency was broadcast (positive phonotactic response) and away from the source when a song model with 33 kHz carrier frequency was used (negative phonotactic response) (Figs. 2, 4).One-eared crickets attempted, while flying, to steer towards the side of the remaining ear when stimulated with the 5 kHz model, and away from that side in response to the 33 kHz model (Fig. 3). While walking, one-eared crickets circled towards and away from the intact side in response to the 5 kHz and 33 kHz models, respectively (Fig. 6).Positive and negative responses differed in their temporal pattern requirements. Phonotactic responses were not elicited when a non-calling song pattern (2 pulses/s) was played with a carrier frequency appropriate for positive phonotactic responses (5 kHz), but this pattern did elicit negative responses with 33 kHz carrier frequency (Figs. 7–10). When an intermediate carrier frequency, 15 kHz, was used, the response type (positive or negative) depended on the stimulus temporal pattern; the calling song pattern elicited primarily positive responses, while the non-calling song pattern elicited negative responses (Figs. 11, 12, 14, 15). A curious phenomenon was often observed in the flight steering responses; while most responses to 15 kHz song pattern were primarily positive, they often had an initial negative component which was supplanted by the positive component of the response after approximately 2–5 s (Figs. 11, 12).In recent experiments onGryllus campestris, Thorson et al. (1982) described frequency-dependent errors in phonotactic direction (anomalous phonotaxis) and showed how such errors might arise from the frequency-dependent directional properties of the cricket's auditory apparatus. Our findings, particularly the dependence of response type on temporal pattern when 15 kHz carrier frequency was used, argue that frequency-dependent directional properties alone cannot account for positive and negative phonotaxis inT. oceanicus. Rather, these represent qualitatively different attempts to locomote towards and away from the sound source, respectively.We discuss the possibility that central integration of these opposing tendencies might contribute to anomalous phonotaxis.  相似文献   

2.
SYNOPSIS. Phonotaxis by female crickets to the calling songof males, is an important model for investigating the neuralbasis of auditory behavior. Recent advances make it possibleto explain some components of this behavior and its hormonalcontrol, at the level of identified neurons and molecular expressionwithin those neurons Tonotopically arranged afferents from the cricket's ear, projectto local and intersegmental prothoracic interneurons. Bilateralprocessing of signals and some temporal-pattern specific processingoccurs in the prothoracic ganglion and influences acoustic informationthat is sent to the brain via ascending interneurons that aredemonstrably involved in phonotaxis. High, low and band- passinterneurons in the brain continue temporal pattern processingwhich matches the selectivity of phonotaxis and may be filtersfor recognition of the calling song. Neurons descending fromthe brain and prothoracic ganglion, direct multimodal signals(including auditory) to more posterior regions, possibly theleg motor neurons that are responsible for phonotaxis Age-related changes or artificially induced changes in JuvenileHormone III levels regulate the threshold for phonotaxis inAcheta domesticus, by varying the threshold of LI, a prothoracicascending interneuron that is necessary for phonotaxis to lowintensity calling songs. Results from in situ hybridizationsuggest that this might be accomplished, in part, by controllingthe levels of nicotinic acetylcholine receptor-like mRNA expressedin LI, presumably by increasing its neurotransmitter receptordensity. L3 is a prothoracic ascending interneuron that exhibitsbandselective response properties to the syllable period ofthe calling song. L3's response is age and JHIII related, andis correlated to phonotactic selectivity. These changes in L3might be accomplished, at least in part by JHIII regulatingthe expression of nicotinic acetylcholine receptor-like mRNAin L3  相似文献   

3.
It is shown that positive phonotaxis of female crickets Gryllus bimaculatus is characterized by a band-pass tuning to the pulse repetition period (PRP) in the male communicative calling song; this feature can be provided by two neuronal mechanisms—high-frequency (HFF) and low-frequency (LFF) filters. With elevation of temperature, PRP becomes shorter. The tuning of phonotaxis to this parameter changes correspondingly. It is suggested that this coupling is provided by differences in properties of LFF and HFF with respect to the environmental temperature as well as to the sound pressure level (SPL) of the signal. In behavioral experiments on a Y-maze labyrinth, the tuning of the female phonotaxis selectivity to PRP in a model calling song was determined for 20 and 25°C at 70 dB SPL and for SPL changing from 70 to 85 dB at 20°C. At an increase both of temperature and of SPL, the optimum of the phonotaxis tuning shifted towards the lower values of PRP. The agreement of the results of this study with the above-exposed hypothesis indicates in favor of possible existence in the cricket of neuronal mechanisms that are different in their characteristics with respect to temperature and signal intensity.  相似文献   

4.
Female crickets (Gryllus pennsylvanicus), caught in the field as nymphs, responded as adults in the laboratory with selective phonotaxis to model calling songs (CSs) that reproduced the dominant carrier frequencies and syllable periods (SPs) characteristic of the male's natural calling song. Extracellular recordings demonstrated two types of auditory interneurons in the female's cervical connectives that were very similar to the AN1 and AN2 neurons previously described in other gryllid species. The AN2 neuron responded to model CSs with a phasically encoded immediate response, and a more tonically encoded prolonged response. AN2's immediate response exhibited SP-dependent decreases (termed decrement) in its responses to sequential syllables of the CS that were greatest to CSs with the shortest SPs and diminished as SPs were lengthened, resulting in an SP-dependent habituation. Picrotoxin application transformed this SP-dependent habituation by AN2 to SP-selective responses in which the degree of decrement was greatest to SPs that were most phonotactically attractive. AN2's prolonged response was most sensitive to 5 kHz CSs and correlated with the carrier frequency tuning for the thresholds of phonotaxis by females. Thus, in females, AN2's immediate (in the presence of picrotoxin) and prolonged responses were selectively tuned to the SPs and carrier frequencies of the male's calls that were most attractive behaviorally. AN1's responses at threshold were also tuned to the dominant carrier frequencies of the male's CS.  相似文献   

5.
L3, an auditory interneuron in the prothoracic ganglion of female crickets (Acheta domesticus) exhibited two kinds of responses to models of the male's calling song (CS): a previously described, phasically encoded immediate response; a more tonically encoded prolonged response. The onset of the prolonged response required 3-8 sec of stimulation to reach its maximum spiking rate and 6-20 sec to decay once the calling song ceased. It did not encode the syllables of the chirp. The prolonged response was sharply selective for the 4-5 kHz carrier frequency of the male's calling songs and its threshold tuning matched the threshold tuning of phonotaxis, while the immediate response of the same neuron was broadly tuned to a wide range of carrier frequencies. The thresholds for the prolonged response covaried with the changing phonotactic thresholds of 2- and 5-day-old females. Treatment of females with juvenile hormone reduced the thresholds for both phonotaxis and the prolonged response by equivalent amounts. Of the 3 types of responses to CSs provided by the ascending L1 and L3 auditory interneurons, the threshold for L3's prolonged response, on average, best matched the same females phonotactic threshold. The prolonged response was stimulated by inputs from both ears while L3's immediate response was driven only from its axon-ipsilateral ear. The prolonged response was not selective for either the CS's syllable period or chirp rate.  相似文献   

6.
Ultrasound sensitive neurons in the cricket brain   总被引:1,自引:0,他引:1  
1. The aim of this study was to identify neurons in the brain of the cricket, Teleogryllus oceanicus, that are tuned to high frequencies and to determine if these neurons are involved in the pathway controlling negative phonotaxis. In this paper we describe, both morphologically and physiologically, 20 neurons in the cricket brain which are preferentially tuned to high frequencies. 2. These neurons can be divided into two morphological classes: descending brain interneurons (DBINs) which have a posteriorly projecting axon in the circumesophageal connective and local brain neurons (LBNs) whose processes reside entirely within the brain. All the DBINs and LBNs have processes which project into one common area of the brain, the ventral brain region at the border of the protocerebrum and deutocerebrum. Some of the terminal arborizations of Int-1, an ascending ultrasound sensitive interneuron which initiates negative phonotaxis, also extend into this region. 3. Physiologically, ultrasonic sound pulses produce 3 types of responses in the DBINs and LBNs. (1) Seven DBINs and 6 LBNs are excited by ultrasound. (2) Ongoing activity in one DBIN and 5 LBNs is inhibited by ultrasound, and (3) one cell, (LBN-ei), is either excited or inhibited by ultrasound depending on the direction of the stimulus. 4. Many of the response properties of both the DBINs and LBNs to auditory stimuli are similar to those of Int-1. Specifically, the strength of the response, either excitation or inhibition, to 20 kHz sound pulses increases with increasing stimulus intensity, while the response latency generally decreases. Moreover, the thresholds to high frequencies are much lower than to low frequencies. These observations suggest that the DBINs and LBNs receive a majority of their auditory input from Int-1. However, the response latencies and directional sensitivity of only LBN-ei suggest that it is directly connected to Int-1. 5. The response of only one identified brain neuron, DBIN8, which is inhibited by 20 kHz sound pulses, is facilitated during flight compared to its response at rest. This suggests that suppression of activity in DBIN8 may be associated with ultrasound-induced negative phonotactic steering responses in flying crickets. The other DBINs and LBNs identified in this paper may also play a role in negative phonotaxis, and possibly in other cricket auditory behaviors influenced by ultrasonic frequencies.  相似文献   

7.
Abstract In response to model calling songs (CSs), the phonotaxis of female Acheta domesticus ranges from being very selective to unselective. Within 15 min of nanoinjecting juvenile hormone III (JHIII) or picrotoxin (PTX) into the prothoracic ganglion, females become more selective for syllable period (SP) than in pre‐tests. Controls for JHIII experiments, including nanoinjection of acetone into the prothoracic ganglion or nanoinjection of JHIII into the metathoracic ganglion, do not influence selectivity. Similarly, nanoinjection of saline into the prothoracic ganglion and nanoinjection of PTX outside of the prothoracic ganglion does not change the overall selectivity of the female’s phonotaxis. These results indicate that circuits in the prothoracic ganglion modulate the SP‐selectivity of phonotaxis. Photoinactivating both of the ON1 prothoracic auditory interneurones in old females that were previously unselective for SP also results in greater SP‐selectivity during phonotaxis. Evidence suggesting that ON1 has this effect via its inhibitory input to L3 (another prothoracic auditory neurone) includes: photoinactivation of one ON1 neurone causes angular errors in the female’s orientation to CSs at 85 dB (above the threshold of the L3), stimulation with 60 dB CSs (above the threshold of ON1 but below the threshold of L3) does not induce errors in angular orientation, inactivation of ON1 in old crickets results in greater angular errors (85 dB stimulus) than it does when ON1 is inactivated in young females, and photoinactivation of ON1 increases the firing rate of the L3 neurone.  相似文献   

8.
In the cricket Gryllus bimaculatus, it is demonstrated that the medial septum in the prothoracic trachea of the auditory system plays an important role in shaping the directional sensitivity of the ear.After perforation of the medial septum, the directional characteristic of intact animals, showing a mean right-to-left difference in sensitivity of 14 dB, becomes more omnidirectional with a mean right-to-left difference of only 7 dB. Correspondingly, the rate of change in auditory sensitivity for a sound source moving from frontal to contralateral is reduced to 0.78 dB/10° versus 1.5 dB/10° in intact animals (Figs. 2, 3).A computer simulation of phonotaxis based on these findings predicts a reduction in phonotactic performance in animals with a perforated septum. This prediction is in good quantitative agreement with experimental data (Fig. 4) and emphasizes the importance of an intact septum for effective phonotaxis in crickets.  相似文献   

9.
Female crickets lacking experience with phonotaxis to conspecific calling song respond to trains of continuously repeated sound pulses (trill), whereas experienced females do not. In the present study such inexperienced crickets were tested for their responsiveness to trills of pulse repetition periods from 30 to 70 ms on a Y- shaped maze. Stimulation with a repetition period of 30 ms led to unexpectedly low phonotactic and exploratory activity. Initial stimulation with trills of 30- ms repetition period drastically reduced the responsiveness of inexperienced animals to conspecific calling song and other attractive stimuli. Effects of visual stimulation on the phonotactic behavior of female crickets are demonstrated. Threatening visual stimuli changed the behavior of experienced animals to a state that resembles that of inexperienced animals. The relevance of these observations is discussed with respect to the development of the auditory pattern recognition mechanism in crickets.  相似文献   

10.
Echolocating bats are auditory specialists, with exquisite hearing that spans several octaves. In the ultrasonic range, bat audiograms typically show highest sensitivity in the spectral region of their species-specific echolocation calls. Well-developed hearing in the audible range has been commonly attributed to a need to detect sounds produced by prey. However, bat pups often emit isolation calls with low-frequency components that facilitate mother-young reunions. In this study, we examine whether low-frequency hearing in bats exhibits correlated evolution with (i) body size; (ii) high-frequency hearing sensitivity or (iii) pup isolation call frequency. Using published audiograms, we found that low-frequency hearing sensitivity is not dependent on body size but is related to high-frequency hearing. After controlling for high-frequency hearing, we found that low-frequency hearing exhibits correlated evolution with isolation call frequency. We infer that detection and discrimination of isolation calls have favoured enhanced low-frequency hearing because accurate parental investment is critical: bats have low reproductive rates, non-volant altricial young and must often identify their pups within large crèches.  相似文献   

11.
In the duetting bushcricket species Poecilimon affinis the male calls at intervals of several seconds and is guided to the female by its short response clicks, which release phonotaxis only when perceived by the male during its sensory time window (40-170 ms after his call). The accuracy of phonotaxis in this acoustically open-loop system was investigated on a locomotion compensator with and without optical cues available. Phonotaxis in darkness was strongly meandrous with numerous roundabouts, while in a structured surrounding the oscillating course was attenuated. With a landmark available the male was able to maintain a straight course to the female. This is achieved by coupling of visual cues to an acoustically detected direction. Thus, in this species, the acoustic cues, which in the songs of continuously singing crickets and bushcrickets are permanently present, are replaced by optical ones. Restricting localization of female clicks to a short time window and using optical cues for target tracking allows straight orientation, even when guided by very short signals at long repetition intervals.  相似文献   

12.
We experimentally demonstrated that tonal acoustic signals with a carrier frequency of 140–200 Hz had a repellent effect on male mosquitoes (Culicidae). Swarming males of Aedes diantaeus were concentrated in a small space near the auxiliary attracting sound source which simulated the flight sound of conspecific females (carrier frequency 280–320 Hz). Then, the resulting cluster of attracted mosquitoes was stimulated with test signals of variable amplitude and carrier frequency from a second loudspeaker. The direction of mosquito flight from the source of test sounds and a decrease in their number above the attracting sound source were used as the criteria of behavioral response. Pronounced avoidance responses (negative phonotaxis) of swarming mosquitoes were observed in the range of 140–200 Hz. Most of the mosquitoes left the area above the attracting sound source within one second after the onset of the test signal. Mosquitoes mostly flew up, sideways, and backwards in relation to the test acoustic vector. We presume that mosquitoes develop defensive behavior against attacking predatory insects based on analysis of auditory information. The range of negative phonotaxis is limited at higher frequencies by the spectrum of the flight sounds of conspecific females, and in the low frequency range, by the increasing level of atmospheric noise.  相似文献   

13.
Summary One foreleg was amputated at mid-femur in adultGryllus bimaculatus females. In phonotaxis tests these monaural crickets show course deviations and circling towards the intact side (Fig. 1). Mean course stability is best at 60 and 70 dB (Fig. 2). Here it differs significantly from a threshold value for orientated walking in females operated on the day of adult moult, but not in those operated two weeks later. The orientational performance improves with the interval between amputation and test (Fig. 3).Centripetal cobalt backfills reveal degeneration of tympanal nerve fibers on the amputated side (Fig. 4B, C). The mean number of intact afferents crossing the midline of the prothoracic ganglion is increased in monaural versus binaural crickets. Maximum transmidline extension is not correlated with the period of deafferentation (Fig. 5).Intracellular recording and staining of prothoracic auditory interneurons shows some axonal sprouts in ON1i (intact side) and ON2, but no significant physiological changes (Figs. 6A, D; 8A, C, E, G). Apart from axonal sprouts ON1a (amputated side) may show a few dendritic sprouts into the intact auditory neuropil (Figs. 6C, 7). Excitation in some ON1a-cells reveals functional contacts to intact auditory afferents (via crossing dendrites or possibly crossing afferents, Figs. 6e, 7, 8F). Morphological and associated physiological changes start early in AN2a (amputated side). The degree of crossing dendrites and contralateral excitation increases with postoperative age (Figs. 8H, 9).  相似文献   

14.
Females of the parasitoid fly Emblemasoma auditrix find their host cicada (Okanagana rimosa) by its acoustic signals. In laboratory experiments, fly phonotaxis had a mean threshold of about 66 dB SPL when tested with the cicada calling song. Flies exhibited a frequency dependent phonotaxis when testing to song models with different carrier frequencies (pulses of 6 ms duration and a repetition rate of 80 pulses s(-1)). However, the phonotactic threshold was rather broadly tuned in the range from 5 kHz to 11 kHz. Phonotaxis was also dependent on the temporal parameters of the song models: repetition rates of 60 pulses s(-1) and 80 pulses s and pulse durations of 5-7 ms resulted in the highest percentages of phonotaxis performing animals coupled with the lowest threshold values. Thus, parasitoid phonotaxis is adapted especially to the temporal parameters of the calling song of the host. Choice experiments revealed a preference of a song model with 9 kHz carrier frequency (peak energy of the host song) compared with 5 kHz carrier frequency (electrophysiologically determined best hearing frequency). However, this preference changed with the relative sound pressure level of both signals. When presented simultaneously, E. auditrix preferred 5-kHz signals, if they were 5 dB SPL louder than the 9-kHz signal.  相似文献   

15.
When crickets (Gryllus bimaculatus) produce their calling, courtship and rivalry songs, they generate, in addition to the audible stridulatory sound, low-frequency air oscillations associated with the inward and outward movements of the forewings. The frequencies of these oscillations are below ca 70 Hz, with a major component at 30 Hz, the syllable repetition rate. In the courtship song, single oscillations are also produced. Jerking movements of the whole body, which often occur in the presence of rivals, cause considerable air currents. In all these cases the air vibrations are sufficient to be perceived both by the individual generating them and by conspecifics (and perhaps by other insects) via air-flow receptors, in crickets the cercal filiform hairs.  相似文献   

16.
This evoked potential study of the bullfrog's auditory thalamic area (an auditory responsive region in the posterior dorsal thalamus) shows that complex processing, distinct from that reported in lower auditory regions, occurs in this center. An acoustic stimulus consisting of two tones, one which stimulates either the low-frequency or the mid-frequency sensitive population of auditory nerve fibers from the amphibian papilla and the other the high-frequency sensitive population of fibers from the basilar papilla, evoked a maximal response. The amplitude of the response to the simultaneous stimulation of the two auditory organs was, in some locations, much larger than the linear sum of the responses to the individual tones presented separately. Bimodal spectral stimuli that had relatively long rise-times (greater than or equal to 100 ms) evoked much larger responses than similar sounds with short rise-times. The optimal rise-times were close to those occurring in the bullfrog's mating call. The response was dependent on the waveform periodicity and harmonic content, with a fundamental frequency of 200 Hz producing a larger response than those with fundamentals of 50, 100 or 300 Hz. Six of the natural calls in the bullfrog's vocal repertoire were tested and the mating call and warning call were found to evoke the best responses. Each of these calls stimulate the two auditory organs simultaneously. The evoked response had a long refractory period which could not be altered by lesioning the efferent telencephalic pathways. The type of spectral and temporal information extracted by the auditory thalamic area suggests that this center is involved in processing complex sounds and likely plays an important role in the bullfrog's detection of some of its vocal signals.  相似文献   

17.
Thresholds of field L auditory evoked potentials EP were studied in 1.5-9-day-old nestlings of pied flycatcher in response to pure tone signals of different frequencies. According to the tendencies of age dynamics of auditory EP thresholds (2-9 days of life) all hearing range was divided into three separate channels: low-frequency (0.3-1.0 kHz), intermediate-(1.5-4.0 kHz) and high-frequency (5.0-8.0 kHz) ones. The widening of the hearing range in its high-frequency part was demonstrated on days 4-5 of life. The development of auditory sensitivity was shown to continue within all three channels in postembryonic period (days 2-9 post-hatching), each of the channels being characterized by its own age dynamics of auditory EP thresholds. Reproduction of tape-recorded species song during days 1-3 post-hatching resulted in significant decrease of auditory EP thresholds.  相似文献   

18.
SYNOPSIS. Field crickets depend on acoustic organs to detectthe presence of potential predators as well as conspecific crickets.Predators are recognized largely on the basis of spectral frequenciesthat are contained in their acoustic signals. Puffs of air andvery low frequencies activate a cricket's cereal receptors andultrasonic frequencies activate their tympanal organs. Bothof these acoustic stimuli release "escape behavior," in theform of evasive movements. An identified neuron sensitive toultrasound is described. Crickets recognize singing conspecificsby both frequency and temporal properties of cricket songs;however species recognition requires specific temporal informationin calling songs. While previous studies have emphasized therole of songs on female behavior, males also recognize conspecificsongs; sexual differences in recognition behavior occur.  相似文献   

19.
Acoustic communication in Gryllus firmus is temperature-coupled: temperature induces parallel changes in male calling song temporal pattern, and in female preference for song. Temperature effects on song production and recognition networks were localized by selectively warming head or thorax or both head and thorax of intact crickets, then eliciting aggression song production (males) or phonotaxis to synthetic calling song (females). Because male song is produced by a thoracic central pattern generator (CPG), and because head ganglia are necessary for female song recognition, measurements of female phonotaxis under such conditions may be used to test the following competing hypotheses about organization of the song recognition network: 1. A set of neurons homologous to the male song CPG exist in the female, and are used as a template that determines preferred values of song temporal parameters for song pattern recognition (the common neural elements hypothesis), and 2. temporal pattern preference is determined entirely within the head ganglia. Neither selective warming of the head nor of the thorax was effective in changing female song preference, but simultaneous warming of head and thorax shifted preference toward a faster song in most preparations, as did warming the whole animal by raising ambient temperature. These results suggest that phonotactic preference for song temporal pattern is plurisegmentally determined in field crickets. Selective warming experiments during aggression song production in males revealed that syllable period is influenced but not completely determined by thoracic temperature; head temperature is irrelevant. The song CPG appears to receive some rate-setting information from outside the thoracic central nervous system.  相似文献   

20.
Two hypotheses have been proposed to explain the mechanisms of calling signal recognition in orthopterans: the filtration and resonance ones. To test these hypotheses, conspecific male calling songs and their models with modified temporal parameters were presented to females of bush crickets in ethological experiments. The models with a double pulse rate evoked positive phonotaxis of females while phase shift significantly complicated the recognition process. These data fit the resonance hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号