首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malonyl-CoA significantly increased the Km for L-carnitine of overt carnitine palmitoyltransferase in liver mitochondria from fed rats. This effect was observed when the molar palmitoyl-CoA/albumin concentration ratio was low (0.125-1.0), but not when it was higher (2.0). In the absence of malonyl-CoA, the Km for L-carnitine increased with increasing palmitoyl-CoA/albumin ratios. Malonyl-CoA did not increase the Km for L-carnitine in liver mitochondria from 24h-starved rats or in heart mitochondria from fed animals. The Km for L-carnitine of the latent form of carnitine palmitoyltransferase was 3-4 times that for the overt form of the enzyme. At low ratios of palmitoyl-CoA/albumin (0.5), the concentration of malonyl-CoA causing a 50% inhibition of overt carnitine palmitoyltransferase activity was decreased by 30% when assays with liver mitochondria from fed rats were performed at 100 microM-instead of 400 microM-carnitine. Such a decrease was not observed with liver mitochondria from starved animals. L-Carnitine displaced [14C]malonyl-CoA from liver mitochondrial binding sites. D-Carnitine was without effect. L-Carnitine did not displace [14C]malonyl-CoA from heart mitochondria. It is concluded that, under appropriate conditions, malonyl-CoA may decrease the effectiveness of L-carnitine as a substrate for the enzyme and that L-carnitine may decrease the effectiveness of malonyl-CoA to regulate the enzyme.  相似文献   

2.
1. Hepatic carnitine palmitoyltransferase activity was measured over a range of concentrations of palmitoyl-CoA and in the presence of several concentrations of the inhibitor malonyl-CoA. These measurements were made in mitochondria obtained from the livers of fed and starved (24 h) normal rats and of fed and starved thyroidectomized rats. 2. In the fed state thyroidectomy substantially decreased overt carnitine palmitoyltransferase activity and also decreased both the Hill coefficient and the s0.5 when palmitoyl-CoA concentration was varied as substrate. Thyroidectomy did not appreciably alter the inhibitory effect of malonyl-CoA on the enzyme. 3. Starvation increased overt carnitine palmitoyltransferase activity in both the fed and the thyroidectomized state. In percentage terms this response to starvation was substantially greater after thyroidectomy. In both the hypothyroid and normal states starvation decreased sensitivity to inhibition by malonyl-CoA.  相似文献   

3.
1. Hepatic carnitine palmitoyltransferase activity was measured over a range of concentrations of palmitoyl-CoA and in the presence of several concentrations of the inhibitor malonyl-CoA. These measurements were made in mitochondria obtained from the livers of fed and starved (24 h) virgin female and fed and starved pregnant rats. 2. In the fed state overt carnitine palmitoyltransferase activity was significantly lower in virgin females than in age-matched male rats. 3. Starvation increased overt carnitine palmitoyltransferase activity in both virgin and pregnant females. This increase was larger than in the male and was greater in pregnant than in virgin females. 4. In the fed state pregnancy had no effect on the Hill coefficient or the [S]0.5 when palmitoyl-CoA was varied as substrate. Pregnancy did not alter the sensitivity of the enzyme to inhibition by malonyl-CoA. 5. Starvation decreased the sensitivity of the enzyme to malonyl-CoA. The change in sensitivity was similar in male, virgin female and pregnant rats. 6. The possible relevance of these findings to known sex differences and changes with pregnancy in hepatic fatty acid oxidation and esterification are discussed.  相似文献   

4.
The effect of malonyl-CoA on the kinetic parameters of carnitine palmitoyltransferase (outer) the outer form of carnitine palmitoyltransferase (palmitoyl-CoA: L-carnitine O-palmitoyltransferase, EC 2.3.1.21) from rat heart mitochondria was investigated using a kinetic analyzer in the absence of bovine serum albumin with non-swelling conditions and decanoyl-CoA as the cosubstrate. The K0.5 for decanoyl-CoA is 3 microM for heart mitochondria from both fed and fasted rats. Membrane-bound carnitine palmitoyltransferase (outer) shows substrate cooperativity for both carnitine and acyl-CoA, similar to that exhibited by the enzyme purified from bovine heart mitochondria. The Hill coefficient for decanoyl-CoA varied from 1.5 to 2.0, depending on the method of assay and the preparation of mitochondria. Malonyl-CoA increased the K0.5 for decanoyl-CoA with no apparent increase in sigmoidicity or Vmax. With 20 microM malonyl-CoA and a Hill coefficient of n = 2.1, the K0.5 for decanoyl-CoA increased to 185 microM. Carnitine palmitoyltransferase (outer) from fed rats had an apparent Ki for malonyl-CoA of 0.3 microM, while that from 48-h-fasted rats was 2.5 microM. The kinetics with L-carnitine were variable: for different preparations of mitochondria, the K0.5 ranged from 0.2 to 0.7 mM and the Hill coefficient varied from 1.2 to 1.8. When an isotope forward assay was used to determine the effect of malonyl-CoA on carnitine palmitoyltransferase (outer) activity of heart mitochondria from fed and fasted animals, the difference was much less than that obtained using a continuous rate assay. Carnitine palmitoyltransferase (outer) was less sensitive to malonyl-CoA at low compared to high carnitine concentrations, particularly with mitochondria from fasted animals. The data show that carnitine palmitoyltransferase (outer) exhibits substrate cooperativity for both acyl-CoA and L-carnitine in its native state. The data show that membrane-bound carnitine palmitoyltransferase (outer) like carnitine palmitoyltransferase purified from heart mitochondria exhibits substrate cooperativity indicative of allosteric enzymes and indicate that malonyl-CoA acts like a negative allosteric modifier by shifting the acyl-CoA saturation to the right. A slow form of membrane-bound carnitine palmitoyltransferase (outer) was not detected, and thus, like purified carnitine palmitoyltransferase, substrate-induced hysteretic behavior is not the cause of the positive substrate cooperativity.  相似文献   

5.
Intact mitochondria and inverted submitochondrial vesicles were prepared from the liver of fed, starved (48 h) and streptozotocin-diabetic rats in order to characterize carnitine palmitoyltransferase kinetics and malonyl-CoA sensitivity in situ. In intact mitochondria, both starved and diabetic rats exhibited increased Vmax., increased Km for palmitoyl-CoA, and decreased sensitivity to malonyl-CoA inhibition. Inverted submitochondrial vesicles also showed increased Vmax. with starvation and diabetes, with no change in Km for either palmitoyl-CoA or carnitine. Inverted vesicles were uniformly less sensitive to malonyl-CoA regardless of treatment, and diabetes resulted in a further decrease in sensitivity. In part, differences in the response of carnitine palmitoyltransferase to starvation and diabetes may reside in differences in the membrane environment, as observed with Arrhenius plots, and the relation of enzyme activity and membrane fluidity. In all cases, whether rats were fed, starved or diabetic, and whether intact or inverted vesicles were examined, increasing membrane fluidity was associated with increasing activity. Malonyl-CoA was found to produce a decrease in intact mitochondrial membrane fluidity in the fed state, particularly at pH 7.0 or less. No effect was observed in intact mitochondria from starved or diabetic rats, or in inverted vesicles from any of the treatment groups. Through its effect on membrane fluidity, malonyl-CoA could regulate carnitine palmitoyltransferase activity on both surfaces of the inner membrane through an interaction with only the outer surface.  相似文献   

6.
The release of carnitine palmitoyltransferase (CPT) activity from rat liver mitochondria by increasing concentrations of digitonin was studied for mitochondrial preparations from fed, 48 h-starved and diabetic animals. A bimodal release of activity was observed only for mitochondria isolated from starved and, to a lesser degree, from diabetic rats, and it appeared to result primarily from the enhanced release of approx. 40% and 60%, respectively, of the total CPT activity. This change in the pattern of release was specific to CPT among the marker enzymes studied. For all three types of mitochondria there was no substantial release of CPT concurrently with that of the marker enzyme for the soluble intermembrane space, adenylate kinase. These results illustrate that the bimodal pattern of release of CPT reported previously for mitochondria from starved rats [Bergstrom & Reitz (1980) Arch. Biochem. Biophys. 204, 71-79] is not an immutable consequence of the localization of CPT activity on either side of the mitochondrial inner membrane. Sequential loss of CPT I (i.e. the overt form) from the mitochondrial inner membrane did not affect the concentration of malonyl-CoA required to effect fractional inhibition of the CPT I that remained associated with the mitochondria. The results are discussed in relation to the possibility that altered enzyme-membrane interactions may account for some of the altered regulatory properties of CPT I in liver mitochondria of animals in different physiological states.  相似文献   

7.
Carnitine palmitoyltransferase I in rat liver mitochondria preincubated with malonyl-CoA was more sensitive to inhibition by malonyl-CoA than was the enzyme in mitochondria preincubated in the absence of malonyl-CoA. For carnitine palmitoyltransferase I in mitochondria from starved animals this increase also resulted in the enzyme becoming significantly more sensitive than that in mitochondria assayed immediately after their isolation. Concentrations of malonyl-CoA that induced half the maximal degree of sensitization observed were 1-3 microM.  相似文献   

8.
Aspects of carnitine ester metabolism in sheep liver   总被引:6,自引:6,他引:0       下载免费PDF全文
1. Carnitine acetyltransferase (EC 2.3.1.7) activity in sheep liver mitochondria was 76nmol/min per mg of protein, in contrast with 1.7 for rat liver mitochondria. The activity in bovine liver mitochondria was comparable with that of sheep liver mitochondria. Carnitine palmitoyltransferase activity was the same in both sheep and rat liver mitochondria. 2. The [free carnitine]/[acetylcarnitine] ratio in sheep liver ranged from 6:1 for animals fed ad libitum on lucerne to approx. 1:1 for animals grazed on open pastures. This change in ratio appeared to reflect the ratio of propionic acid to acetic acid produced in the rumen of the sheep under the two dietary conditions. 3. In sheep starved for 7 days the [free carnitine]/[acetylcarnitine] ratio in the liver was 0.46:1. The increase in acetylcarnitine on starvation was not at the expense of free carnitine, as the amounts of free carnitine and total acid-soluble carnitine rose approximately fivefold on starvation. An even more dramatic increase in total acid-soluble carnitine of the liver was seen in an alloxan-diabetic sheep. 4. The [free CoA]/[acetyl-CoA] ratio in the liver ranged from 1:1 in the sheep fed on lucerne to 0.34:1 for animals starved for 7 days. 5. The importance of carnitine acetyltransferase in sheep liver and its role in relieving ;acetyl pressure' on the CoA system is discussed.  相似文献   

9.
The hepatic carnitine palmitoyltransferase that is present on the outer surface of the mitochondrial inner membrane demonstrates hyperbolic substrate saturation curves with oleoyl-CoA in both fasted and fed rats. However, the addition of malonyl-CoA resulted in sigmoid substrate saturation curves, suggesting that malonyl-CoA induced the cooperative behavior. There was more of the outer carnitine palmitoyltransferase in liver mitochondria derived from fasted rats and that enzyme had a much greater Ki for malonyl-CoA than the enzyme from fed rats, but the Km values were apparently not different. The Dixon plot with mitochondria from fed rats, but not fasted rats, was curved upward, indicating cooperative inhibition by malonyl-CoA. Carnitine palmitoyltransferase of heart mitochondria had a Ki for malonyl-CoA that was much less than that of the liver enzyme and it did not change on fasting. Furthermore, no evidence for cooperative inhibition was found in the heart. The results of these studies indicate that carnitine palmitoyltransferase is not subject to substrate cooperativity and that malonyl-CoA is not a simple competitive inhibitor of this enzyme but inhibits by a mechanism involving cooperative inhibition. The fasting-feeding cycle induces changes in the liver enzyme that alter its affinity for malonyl-CoA without changing its affinity for its acyl-CoA substrate. Carnitine palmitoyltransferase from heart appears to be different from that of liver and is apparently not subject to the same control mechanisms.  相似文献   

10.
The sensitivity of carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate was decreased markedly in liver mitochondria isolated from either 48 h-starved or streptozotocin-diabetic rats. These treatments of the rat also decreased the sensitivity of fatty acid oxidation by isolated hepatocytes to inhibition by this compound. Furthermore, incubation of hepatocytes prepared from fed rats with N6O2'-dibutyryl cyclic AMP also decreased the sensitivity, whereas incubation of hepatocytes prepared from starved rats with lactate plus pyruvate had the opposite effect on 4-hydroxyphenylglyoxylate inhibition of fatty acid oxidation. The sensitivity of carnitine palmitoyltransferase I of mitochondria to 4-hydroxyphenylglyoxylate increased in a time-dependent manner, as previously reported for malonyl-CoA. Likewise, oleoyl-CoA activated carnitine palmitoyltransferase I in a time-dependent manner and prevented the sensitization by 4-hydroxyphenylglyoxylate. Increased exogenous carnitine caused a moderate increase in fatty acid oxidation by hepatocytes under some conditions and a decreased 4-hydroxyphenylglyoxylate inhibition of fatty acid oxidation at low oleate concentration, without decreasing the difference in 4-hydroxyphenylglyoxylate inhibition between fed- and starved-rat hepatocytes. Time-dependent changes in the conformation of carnitine palmitoyltransferase I or the membrane environment may be involved in differences among nutritional states in 4-hydroxyphenylglyoxylate-sensitivity of carnitine palmitoyltransferase I.  相似文献   

11.
The degree of inhibition of CPT I (carnitine palmitoyltransferase, EC 2.3.1.21) in isolated rat liver mitochondria by malonyl-CoA was studied by measuring the activity of the enzyme over a short period (15s) after exposure of the mitochondria to malonyl-CoA for different lengths of time. Inhibition of CPT I by malonyl-CoA was markedly time-dependent, and the increase occurred at the same rate in the presence or absence of palmitoyl-CoA (80 microM), and in the presence of carnitine, such that the time-course of acylcarnitine formation deviated markedly from linearity when CPT I activity was measured in the presence of malonyl-CoA over several minutes. The initial rate of increase in degree of inhibition with time was independent of malonyl-CoA concentration. CPT I in mitochondria from 48 h-starved rats had a lower degree of inhibition by malonyl-CoA at zero time, but was equally capable of being sensitized to malonyl-CoA, as judged by an initial rate of increase of inhibition identical with that of the enzyme in mitochondria from fed rats. Double-reciprocal plots for the degree of inhibition produced by different malonyl-CoA concentrations at zero time for the enzyme in mitochondria from fed or starved animals indicated that the enzyme in the latter mitochondria was predominantly in a state with low affinity for malonyl-CoA (concentration required to give 50% inhibition, I0.5 congruent to 10 microM), whereas that in mitochondria from fed rats displayed two distinct sets of affinities: low (congruent to 10 microM) and high (less than 0.3 microM). Plots for mitochondria after incubation for 0.5 or 1 min with malonyl-CoA indicated that the increased sensitivity observed with time was due to a gradual increase in the high-affinity state in both types of mitochondria. These results suggest that the sensitivity of CPT I in rat liver mitochondria in vitro had two components: (i) an instantaneous sensitivity inherent to the enzyme which depends on the nutritional state of the animal from which the mitochondria are isolated, and (ii) a slow, malonyl-CoA-induced, time-dependent increase in sensitivity. It is suggested that the rate of malonyl-CoA-induced sensitization of the enzyme to malonyl-CoA inhibition is limited by a slow first-order process, which occurs after the primary event of interaction of malonyl-CoA with the mitochondria.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Rates of ketogenesis in mitochondria from fed or starved rats were identical at optimal substrate concentrations, but responded differently to inhibition by malonyl-CoA. Kinetic data suggest that the K1 for malonyl-CoA is greater in the starved animal. These results indicate that, for the regulation of ketogenesis in the starved state, the lower sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA may be more important than the concentration of malonyl-CoA.  相似文献   

13.
Sodium 2-[5-(4-chlorophenyl)-pentyl]-oxirane-2-carboxylate (B 807-27 or POCA) inhibits ketogenesis from endogenous and exogenous long-chain fatty acids and 14CO2 production from [U-14 C]palmitate, but not from [U-14 C]palmitoylcarnitine or octanoate, and inhibits gluconeogenesis from lactate and pyruvate in perfused livers of starved rats. Inhibition of ketogenesis, 14CO2 production and gluconeogenesis was complete at concentrations of 10 mumol/l POCA, but onset was more rapid for inhibition of ketogenesis and CO2 production than for gluconeogenesis. Infusion of octanoate abolished inhibition of all three processes. Experiments with isolated rat liver mitochondria showed that carnitine palmitoyltransferase I (EC 2.3.1.21) is inhibited by POCA-CoA. The inhibitory process is dependent on time and concentration, and more pronounced in mitochondria from fed than from fasted rats. Concentrations required for 50% inhibition after 20 min preincubation with POCA-CoA are 0.02, 0.06 and 0.1 mumol/l in liver mitochondria from fed, 24-h-fasted and 48-h-fasted rats, respectively. The inhibitor appears to be tightly bound to the enzyme. The extent of inhibition of carnitine palmitoyltransferase I correlates well with the hypoglycaemic and hypoketonaemic effects of the compounds in fasted rats. We conclude that specific inhibition of the enzyme leads, due to inhibition of long-chain fatty acid utilization, to depressed ketogenesis and gluconeogenesis and, in consequence, to hypoglycaemic and hypoketonaemia in vivo under gluconeogenic and ketogenic conditions.  相似文献   

14.
The effects of 2-tetradecylglycidic acid (TDGA), TDGA-CoA and TDGA-carnitine were examined in purified hepatic CPT (carnitine palmitoyltransferase) and in hepatic mitochondria and inverted submitochondrial vesicles derived from Sprague-Dawley rats. Since TDGA has been reported as a specific inhibitor of carnitine palmitoyltransferase-A (CPT-A), the focus was on kinetics and inhibition of CPT-A, and the relationship of this key enzyme to beta-oxidation. After administration of TDGA in vivo to overnight-starved rats, the Vmax. of CPT in intact mitochondria and in inverted vesicles (CPT-B) was depressed by 66%. The S0.5 for palmitoyl-CoA and Km for carnitine were unchanged. The I50 (concn. giving 50% inhibition) for malonyl-CoA was significantly increased from 20 to 141 microM in intact mitochondria, but unchanged (199 versus 268 microM) in inverted vesicles. The addition in vitro of TDGA-CoA (0-1.0 microM) gave I50 values of 0.29 and 0.27 microM (S.E.M. = 0.19) in intact mitochondria from fed and 48 h-starved rats, and 0.81 and 1.57 microM (S.E.M. = 0.29) for inverted vesicles derived from fed and starved rats. Addition in vitro of TDGA-carnitine to mitochondria from starved rats yielded an I50 value of 27.7 mM (S.E.M. = 12.2) for L-[methyl-14C]carnitine release from palmitoyl-L-[methyl-14C]carnitine and 0.64 mM (S.E.M. = 0.07) for palmitoyl-L-[methyl-14C]carnitine formation from L-[methyl-14C]carnitine in intact mitochondria. Inverted vesicles were not measurably sensitive to TDGA-carnitine up to 500 microM for the assay of L-[methyl-14C]carnitine release, but were as sensitive as intact mitochondria when inhibition was determined in the direction of palmitoyl-L-[methyl-14C]carnitine formation (I50 = 0.54 +/- 0.07 microM). When TDGA-CoA was added to intact mitochondria, then incubated for 5 min at room temperature and subsequently washed out, Vmax. of CPT decreased from 5.8 to 3.5 (S.E.M. = 0.6) in intact mitochondria, and from 17.2 to 6.3 (S.E.M. = 4.8) in inverted vesicles. The Km for L-carnitine and the S0.5 for palmitoyl-CoA increased 2-fold with TDGA-CoA pretreatment in both intact mitochondria and inverted vesicles. Detergent solubilization (0.05% Triton X-100) resulted in a complete loss of TDGA-CoA sensitivity (up to 1.0 microM measured). Sonicated mitochondria exhibited an I50 of 0.72 +/- 0.03 microM.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
1. Liver carnitine acyltransferase activities with palmitoyl-CoA and octanoyl-CoA as substrates and heart carnitine palmitoyltransferase were measured as overt activities in whole mitochondria or in mitochondria disrupted by sonication or detergent treatment. All measurements were made in sucrose/KCl-based media of 300 mosmol/litre. 2. In liver mitochondria, acyltransferase measured with octanoyl-CoA, like carnitine palmitoyltransferase, was found to have latent and overt activities. 3. Liver acyltransferase activities measured with octanoyl-CoA and palmitoyl-CoA differed in their response to changes in [K+], Triton X-100 treatment and, in particular, in their response to Mg2+. Mg2+ stimulated activity with octanoyl-CoA, but inhibited carnitine palmitoyltransferase. 4. The effects of K+ and Mg2+ on liver overt carnitine palmitoyltransferase activity were abolished by Triton X-100 treatment. 5. Heart overt carnitine palmitoyltransferase activity differed from the corresponding activity in liver in that it was more sensitive to changes in [K+] and was stimulated by Mg2+. Heart had less latent carnitine palmitoyltransferase activity than did liver. 6. Overt carnitine palmitoyltransferase in heart mitochondria was extremely sensitive to inhibition by malonyl-CoA. Triton X-100 abolished the effect of low concentrations of malonyl-CoA on this activity. 7. The inhibitory effect of malonyl-CoA on heart carnitine palmitoyltransferase could be overcome by increasing the concentration of palmitoyl-CoA.  相似文献   

16.
Malonyl-CoA and 2-tetradecylglycidyl-CoA (TG-CoA) are potent inhibitors of mitochondrial carnitine palmitoyltransferase I (EC 2.3.1.21). To gain insight into their mode of action, the effects of both agents on mitochondria from rat liver and skeletal muscle were examined before and after membrane disruption with octylglucoside or digitonin. Pretreatment of intact mitochondria with TG-CoA caused almost total suppression of carnitine palmitoyltransferase I, with concomitant loss in malonyl-CoA binding capacity. However, subsequent membrane solubilization with octylglucoside resulted in high and equal carnitine palmitoyltransferase activity from control and TG-CoA pretreated mitochondria; neither solubilized preparation showed sensitivity to malonyl-CoA or TG-CoA. Upon removal of the detergent by dialysis the bulk of carnitine palmitoyltransferase was reincorporated into membrane vesicles, but the reinserted enzyme remained insensitive to both inhibitors. Carnitine palmitoyltransferase containing vesicles failed to bind malonyl-CoA. With increasing concentrations of digitonin, release of carnitine palmitoyltransferase paralleled disruption of the inner mitochondrial membrane, as reflected by the appearance of matrix enzymes in the soluble fraction. The profile of enzyme release was identical in control and TG-CoA pretreated mitochondria even though carnitine palmitoyltransferase I had been initially suppressed in the latter. Similar results were obtained when animals were treated with 2-tetradecylglycidate prior to the preparation of liver mitochondria. We conclude that malonyl-CoA and TG-CoA interact reversibly and irreversibly, respectively, with a common site on the mitochondrial (inner) membrane and that occupancy of this site causes inhibition of carnitine palmitoyltransferase I, but not of carnitine palmitoyltransferase II. Assuming that octylglucoside and digitonin do not selectively inactivate carnitine palmitoyltransferase I, the data suggest that both malonyl-CoA and TG-CoA interact with a regulatory locus that is closely juxtaposed to but distinct from the active site of the membrane-bound enzyme.  相似文献   

17.
1. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities were measured in mitochondria at various acyl-CoA concentrations before and after sonication, thus permitting assessment of both overt and latent activities. 2. Overt carnitine palmitoyltransferase in liver and adipocyte mitochondria and overt carnitine octanoyltransferase in liver mitochondria were inhibited by malonyl-CoA. None of the latent activities were affected by this metabolite. 3. 5,5'-Dithiobis-(2-nitrobenzoic acid) stimulated latent hepatic carnitine palmitoyltransferase at low [palmitoyl-CoA]. 4. Starvation (24 h) decreased overt carnitine palmitoyltransferase activity in adipocyte mitochondria, but did not alter the sensitivity of this activity to malonyl-CoA.  相似文献   

18.
1. The kinetic properties of overt carnitine palmitoyltransferase (CPT I, EC 2.3.1.21) were studied in rat liver mitochondria isolated from untreated, diabetic and insulin-treated diabetic animals. A comparison was made of the time courses required for the changes in these properties of CPT I to occur and for the development of ketosis during the induction of chronic diabetes and its reversal by insulin treatment. 2. The development of hyperketonaemia over the first 5 days of insulin withdrawal from streptozotocin-treated rats was accompanied by parallel increases in the activity of CPT I and in the I0.5 (concentration required to produce 50% inhibition) of the enzyme for malonyl-CoA. 3. The rapid reversal of the ketotic state by treatment of chronically diabetic rats with 6 units of regular insulin was not accompanied by any change in the properties of CPT I over the first 4 h. Higher doses of insulin (15 units), delivered throughout a 4 h period, resulted in an increase in the affinity of CPT I for malonyl-CoA, but the sensitivity of the enzyme to the inhibitor was still significantly lower than in mitochondria from normal animals. 4. Conversely, when insulin treatment was continued over a 24 h period, full restoration of the sensitivity of the enzyme to malonyl-CoA was achieved. However, the activity of the enzyme was only decreased marginally. 5. These results are discussed in terms of the possibility that the major regulatory sites of the rate of hepatic oxidation may vary in different phases of the induction and reversal of chronic diabetes.  相似文献   

19.
Carnitine palmitoyltransferase of liver mitochondria prepared from ketotic diabetic rats has a diminished sensitivity to inhibition by malonyl-CoA compared with carnitine palmitoyltransferase of mitochondria prepared from normal fed rats.  相似文献   

20.
Insulin treatment of streptozotocin-diabetic rats restores the depressed palmitoyl-group oxidation observed in brown-adipose-tissue mitochondria from diabetic rats. A relatively rapid effect of insulin (5 h) to increase carnitine-dependent oxidation of palmitoyl-CoA and to increase overt carnitine palmitoyltransferase activity is differentiated from a slower effect of the hormone (1 day) to increase palmitoylcarnitine oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号