首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative and qualitative analyses were made of aberrations induced by 3 hitherto well-known mutagens, mitomycin C (MC), 5-bromodeoxyuridine (BUdR and hydroxylamine hydrocholride (HA), in muntjac chromosomes, during different stages of the cell cycle. The sensitivity ro MC was increased in G1, reached its maximum in early S and was considerably decreased in late S and G2 stage treated cells. BUdR induced maximal aberrations when given during the synthetic phase and the cells in G1 and G2 were least affected. The sensitivity of the cells to HA in terms of induced chromosomal aberrations increased as they moved through the cell cycle, i.e. more damage was observed in cells treated in late S and G2 stages than in those treated at G1 and early S stages. While there were defined patterns of cell-cylce stage-dependent sensitivity for all 3 chemicals, the chromosomal sites being preferentially affected by each were found to be specific and invariant at different stages. Thus, it is presumed that the functional state of such “preferred sites” at one or other stage of the cell cycle is the factor responsible for the stage-dependent sensitivity of a cell towards these chemicals.  相似文献   

2.
Summary X-ray induced chromosomal aberrations in peripheral blood lymphocytes as well as in skin fibroblasts from ataxia telangiectasia patients, and from normal individuals were studied. At all stages of cell cycles—namely G0, G1, and G2, more aberrations were induced in AT cells than in normal cells. In addition, AT cells were sensitive to induction of chromosomal aberrations by tritium beta rays from incorporated radioactive thymidine. Possible reasons for the increased sensitivity of AT cells for induction of chromosomal aberrations by ionizing radiations are discussed.  相似文献   

3.
Chromosome breakage and rejoining of sister chromatids in Bloom's syndrome   总被引:2,自引:0,他引:2  
The occurrence of chromosome breaks and reunion of sister chromatids in lymphocytes of two patients with Bloom's syndrome has been compared with those found in X-rayed and control cells. The distribution of breaks in BS is non-random both between and within chromosomes, the centric regions of certain chromosomes being preferentially involved. The following working hypotheses are put forward: When chromosome breaks in human lymphocytes occur in G0— G1, practically no sister chromatid reunion (SCR) takes place, whereas ends created by an S—G2 break show a considerable tendency to SCR. We propose further that chromosome aberrations in BS mainly result from breaks in S—G2, including possible U-type rejoining of sister chromatid exchanges. Fragments extra to an intact chromosome complement result from a chromatid break or an asymmetrical chromatid translocation in a previous mitosis.  相似文献   

4.
By means of combined experiments of X-irradiation and 3H-thymidine labeling of the chromosomes which are in the phase of synthesis, and the subsequent analysis at metaphase on the autoradiographs of the chromosomal damage induced during interphase, it was shown that in somatic cells from a quasi-diploid Chinese hamster line cultured in vitro the chromosomes change their response to radiation from single (chromosome type aberrations) to double (chromatid type aberrations) in late G1. These results are interpreted to indicate that the chromosome splits into two chromatids in G1, before DNA replication. — By extending the observations at the second metaphase after irradiation, it was also seen that cells irradiated while in G2 or late S when they reach the second post-irradiation mitosis still exhibit, beside chromosome type aberrations, many chromatid exchanges, some of which are labeled. Two hypotheses are suggested to account for this unexpected reappearance of chromatid aberrations at the second post-irradiation division. The first hypothesis is that they arise from half-chromatid aberrations. The second hypothesis, which derives from a new interpretation of the mechanisms of production of chromosome aberrations recently forwarded by Evans, is that they arise from gaps or achromatic lesions which undergo, as the cells go through the next cycle, a two-step repair process culminating in the production of aberrations.This work was supported in part by grant No. RH-00304 from the Division of Radiological Health, Bureau of State Services, Public Health Service, U.S.A.  相似文献   

5.
1-β-D-Arabinofuranosyl cytosine (ara-C) is a clinically important cytotoxic drug which is a potent inhibitor of DNA but which has a minimal effect on other cellular processes. The cytotoxic action of ara-C on mammalian cells has been suggested to be due to the chromosome aberrations induced by this compound. Using a marsupial cell line (JU56), the cells of which contain only 9 readily identified chromosomes, the different types of chromosome aberrations induced by a pulse of ara-C have been quantified, and the cell cycle dependence of the damage has been assessed. It was found that, for cells exposed in G2, both chromatid-type and chromosome-type lesions were produced. The frequency of these lesions was reduced by a chase of deoxycytidine, and there was some evidence that the initial lesions are gaps which may later be converted to true breaks. In early G2 and late S cells, lesions were produced chiefly at one chromosome locations; this location was not specifically late-replicating. At all stages of S, lesions were chiefly chromatid-type, and some exchanges occurred. The level of damage in S cells was not influences by a deoxycytidine chase. There was negligible damage in cells exposed in G1.It is suggested that the reason previous investigators have obtained very different cell cycle dependence of chromosomes damage is that the delaying effects of ara-C on cell cycle progression was not taken into account.  相似文献   

6.
Vicia faba root tip cells were treated for short periods with tritiated thymidine, either immediately before or after exposure of roots to x-rays, and autoradiograph preparations were analysed in an attempt to test the hypothesis that chromatid type (B') aberrations are induced only in those chromosome regions that have synthesized DNA prior to x-irradiation, whereas chromosome type (B') aberrations are induced only in unduplicated chromosome regions. Studying the relation between presence or absence of label at loci involved in aberrations, in cells irradiated at different development stages, and the pattern of labelling in cells carrying both types of aberration leads to the conclusion that B' aberrations are induced only in unreplicated chromosome regions. Following replication, only B' aberrations are induced, but these aberrations are also induced in chromosome regions preparing to incorporate DNA. It is suggested that the doubled response of the chromosome to x-rays prior to DNA incorporation might reflect a physical separation of replicating units prior to replication. The aberration yields in damaged cells which were irradiated in G1 S, and early G2 were in the ratio of 1.0:2.0:3.2. The data indicate that the increased yield of B' in early G2 relative to S cells may be a consequence of changes in the spatial distribution of the chromosomes within the nucleus.  相似文献   

7.
Chinese hamster ovary cells (CHO) were X-irradiated in G1 and G2 stages of the cell cycle and subsequently Neurospora endonuclease (NE) (E.C.3.1.4), an enzyme which is specific in cleaving single-stranded DNA, was introduced into the cells, after making the cells permeable by treatment with inactivated Sendai virus. With this treatment all classes of X-ray-induced chromatid aberrations increased in G2 cells, whereas in G1 cells an increase in cromosome type of aberrations was found, associated with a profound induction of chromatid type of aberrations as well. Duration of the availability of single-strand gaps for the action of NE has been studied in G2 cells following X-irradiation and the influence of different parts of the G2 stage on the type and frequencies of chromatid aberrations was discerned. While the increase in chromosome type of aberrations by NE in X-irradiated G1 cells has been interpreted as due to the conversion of DNA single-strand breaks or gaps to double-strand breaks by NE, the induction of chromatid aberrations in G1 has been assumed to be due to conversion of some of the damaged bases strand breaks by NE. Biochemical evidence is presented for the conversion by NE of DNA single-strand breaks induced by X-rays into double-strand breaks using neutral sucrose gradient centrifugation.  相似文献   

8.
Human lymphocyte were treated in G1 with 4-nitroquinoline-N-oxide (4NQO) and methyl methanesulfonate (MMS) and then incubated in the presence or absence of cytosine arabinoside (ara-C). There was an increase in aberration frequency in those cells incubated with ara-C compared with those treated with 4NQO or MMS alone. This increase was restricted to chromosome-type aberrations. When cells were treated in G2 with 4NQO and then incubated with ara-C until fixation, there was an increase in deletions compared with cells treated with 4NQO alone. No exchange aberrations were observed following any treatment even when deletion frequencies were high, as in the case with 4NQO plus ara-C treatment. These results suggest that ara-C can inhibit the repair of DNA damage induced by 4NQO and MMS that is converted into aberrations. They also show that the terms “S-dependent” and “S-independent” used to describe the modes of action of chemical clastogens are not valid.  相似文献   

9.
Cell cycle-arrested cancer cells are resistant to conventional chemotherapy that acts on the mitotic phases of the cell cycle, although the molecular mechanisms involved in halting cell cycle progression remain unclear. Here, we demonstrated that RFPL4A, an uncharacterized ubiquitin ligase, induced G1 retention and thus conferred decreased sensitivity to chemotherapy in the human colorectal cancer cell line, HCT116. Long term time lapse observations in HCT116 cells bearing a “fluorescence ubiquitin-based cell cycle indicator” identified a characteristic population that is viable but remains in the G1 phase for an extended period of time (up to 56 h). Microarray analyses showed that expression of RFPL4A was significantly up-regulated in these G1-arrested cells, not only in HCT116 cells but also in other cancer cell lines, and overexpression of RFPL4A increased the G1 population and decreased sensitivity to chemotherapy. However, knockdown of RFPL4A expression caused the cells to resume mitosis and induced their susceptibility to anti-cancer drugs in vitro and in vivo. These results indicate that RFPL4A is a novel factor that increases the G1 population and decreases sensitivity to chemotherapy and thus may be a promising therapeutic target for refractory tumor conditions.  相似文献   

10.
Summary Human leukocyte cultures were irradiated with 200 R X-rays before the addition of phytohemagglutinin (PHA) in the G0-stage and at different times up to 25 h within the first G1-phase of the cell cyle after the addition of PHA. The results of the analysis of chromosomal aberrations show that the frequencies of dicentric chromosomes increase significantly when leukocytes leave the G0-stage, reaching a maximum yield of aberrations about halfway through the first G1-phase. After that, toward the end of the G1-phase, the frequencies of dicentric chromosomes decrease again, to a level similar to that found in the G0-stage. Different possible explanations for the differential chromosomal radiosensitivity of human leukocytes within the first poststimulation G1-phase are discussed.  相似文献   

11.
DNA double-strand breaks (DSBs) are arguably the most important lesions induced by ionizing radiation (IR) since unrepaired or misrepaired DSBs can lead to chromosomal aberrations and cell death. The two major pathways to repair IR-induced DSBs are non-homologous end-joining (NHEJ) and homologous recombination (HR). Perhaps surprisingly, NHEJ represents the predominant pathway in the G1 and G2 phases of the cell cycle, but HR also contributes and repairs a subset of IR-induced DSBs in G2. Following S-phase-dependent genotoxins, HR events give rise to sister chromatid exchanges (SCEs), which can be detected cytogenetically in mitosis. Here, we describe that HR occurring in G2-irradiated cells also generates SCEs in ∼50% of HR events. Since HR of IR-induced DSBs in G2 is a slow process, SCE formation in G2-irradiated cells requires several hours. During this time, irradiated S-phase cells can also reach mitosis, which has contributed to the widely held belief that SCEs form only during S phase. We describe procedures to measure SCEs exclusively in G2-irradiated cells and provide evidence that following IR cells do not need to progress through S phase in order to form SCEs.Key words: sister chromatid exchanges, double-strand break repair, ionizing radiation, homologous recombination, G2 phase  相似文献   

12.
Summary The effect of post-treatments with caffeine in G2 on the frequency of X-ray-induced chromatid aberrations was studied in normal and ataxia telangiectasia (A-T) fibroblast and lymphoblastoid cells. Caffeine was found to potentiate the X-ray-induced aberration yield in both normal fibroblast and lymphoblastoid cells. An enhancement was also observed in A-T lymphoblastoid cells, whereas the X-ray-induced aberration frequency in A-T fibroblasts was unaffected by the presence of caffeine. The influence of caffeine on the radiationinduced mitotic inhibition was investigated in normal and A-T fibroblasts; in both types of cell less inhibition was obtained in the presence of caffeine.  相似文献   

13.
Entry and progression through mitosis has traditionally been linked directly to the activity of cyclin-dependent kinase 1 (Cdk1). In this study we utilized low doses of the Cdk1-specific inhibitor, RO3306 from early G2 phase onwards. Addition of low doses of RO3306 in G2 phase induced minor chromosome congression and segregation defects. In contrast, mild doses of RO3306 during G2 phase resulted in cells entering an aberrant mitosis, with cells fragmenting centrosomes and failing to fully disassemble the nuclear envelope. Cells often underwent cytokinesis and metaphase simultaneously, despite the presence of an active spindle assembly checkpoint, which prevented degradation of cyclin B1 and securin, resulting in the random partitioning of whole chromosomes. This highly aberrant mitosis produced a significant increase in the proportion of viable polyploid cells present up to 3 days post-treatment. Furthermore, cells treated with medium doses of RO3306 were only able to reach the threshold of Cdk1 substrate phosphorylation required to initiate nuclear envelope breakdown, but failed to reach the levels of phosphorylation required to correctly complete pro-metaphase. Treatment with low doses of Okadaic acid, which primarily inhibits PP2A, rescued the mitotic defects and increased the number of cells that completed a normal mitosis. This supports the current model that PP2A is the primary phosphatase that counterbalances the activity of Cdk1 during mitosis. Taken together these results show that continuous and subtle disruption of Cdk1 activity from G2 phase onwards has deleterious consequences on mitotic progression by disrupting the balance between Cdk1 and PP2A.  相似文献   

14.
The effects of post-treatments with caffeine in G2 on the frequency of chromosomal aberrations induced by thiotepa, mitomycin C and N-methyl-N-nitro-N′-nitrosoguanidine were studied in human lymphocytes. Caffeine was found to potentiate the frequency of chromatid aberrations induced by all 3 S-dependent agents tested; the most striking enhancement being obtained when caffeine was present during the last 1.5 h before harvesting. Post-treatments in G2 with 3-aminobenzamide had no influence on the aberration frequency induced by thiotepa and N-methyl-N-nitro-N′-nitrosoguanidine.  相似文献   

15.
Bloom's syndrome (BS) and EM9 cells both display elevated frequencies of sister chromatid exchange (SCE) following growth for two rounds of DNA replication in bromodeoxyuridine (BrdU)-containing medium. To learn whether hyperresponsiveness to BrdU itself might play a role in causing the SCE elevation, the effects of BrdU on two other parameters, cellular proliferation and chromosome disruption, were examined, comparing the responses of BS and normal lymphoblastoid cells and of EM9 and CHO cells. BS and normal cells responded similarly with respect to growth for 4 days in BrdU-containing medium (0, 1, 3, and 5 g/ml). Chromosome aberrrations were increased only slightly in the BS and normal cells after 2 days in BrdU. CHO cells responded to growth in BrdU-containing medium like BS and normal cells; however, little growth of EM9 was detected at any of the BrdU concentrations employed. CHO and EM9 cells also exhibited strikingly different amounts of chromosome damage following growth in BrdU. After 2 days in 1, 3, and 5 g/ml BrdU 21%, 46%, and 50%, respectively, of the CHO cells had chromosome aberrations in contrast to 92%, 96%, and 98% of the EM9 cells. Most of the aberrations in the BrdU-treated CHO cells consisted of what appeared to be polycentric and ring chromosomes or chromosomes exhibiting telomere association. Acentric fragments were absent from most cells with polycentric and ring chromosomes, indicating either that the abnormal chromosomes were formed during an earlier cell cycle or that the abnormal chromosomes represent a form of association in which the telomeres are apposed so tightly that the juncture between chromosomes cannot be identified microscopically. EM9 cells treated with BrdU exhibited many chromatid and isochromatid gaps and breaks as well as numerous quadriradial, triradial, and complex interchange configurations. In addition, the types of aberrations present in CHO cells also were increased greatly in number. The different responses of BS and EM9 cells to growth in BrdU suggest that the molecular defects in the two cell types are different.  相似文献   

16.
The incorporation of thymidine-H3 and lysine-H3 into human leukocyte chromosomes was studied in order to determine the temporal relationships between the syntheses of chromosomal deoxyribonucleic acid and chromosomal protein. The labeled compounds were incorporated into nuclei of interphase cells. Label from both precursors became apparent over the chromosomes of dividing cells. Incorporation of thymidine-H3 occurred during a restricted period of midinterphase (S) which was preceded by a nonsynthetic period (G1) and followed by a nonsynthetic period (G2). Incorporation of lysine-H3 into chromosomal protein occurred throughout interphase. Grain counts made over chromosomes of dividing cells revealed that the rate of incorporation of lysine-H3 into chromosomal protein differed during various periods of interphase. The rate of incorporation was diminished during G1. During early S period the rate of incorporation increased, reaching a peak in late S. The high rate continued into G2. Thymidine-H3 incorporated into DNA was distributed to mitotic chromosomes of daughter cells in a manner which has been referred to as a "semi-conservative segregation." No such semi-conservative mechanism was found to affect the distribution of lysine-H3 to the mitotic chromosomes of daughter cells. Therefore, it is concluded that synthesis of chromosomal protein and its distribution to chromosomes of daughter cells are not directly influenced by synthesis and distribution of the chromosomal DNA with which the protein is associated.  相似文献   

17.
Chen CJ  Makino S 《Journal of virology》2004,78(11):5658-5669
Mouse hepatitis virus (MHV) replication in actively growing DBT and 17Cl-1 cells resulted in the inhibition of host cellular DNA synthesis and the accumulation of infected cells in the G0/G1 phase of the cell cycle. UV-irradiated MHV failed to inhibit host cellular DNA synthesis. MHV infection in quiescent 17Cl-1 cells that had been synchronized in the G0 phase by serum deprivation prevented infected cells from entering the S phase after serum stimulation. MHV replication inhibited hyperphosphorylation of the retinoblastoma protein (pRb), the event that is necessary for cell cycle progression through late G1 and into the S phase. While the amounts of the cellular cyclin-dependent kinase (Cdk) inhibitors p21Cip1, p27Kip1, and p16INK4a did not change in infected cells, MHV infection in asynchronous cultures induced a clear reduction in the amounts of Cdk4 and G1 cyclins (cyclins D1, D2, D3, and E) in both DBT and 17Cl-1 cells and a reduction in Cdk6 levels in 17Cl-1 cells. Infection also resulted in a decrease in Cdk2 activity in both cell lines. MHV infection in quiescent 17Cl-1 cells prevented normal increases in Cdk4, Cdk6, cyclin D1, and cyclin D3 levels after serum stimulation. The amounts of cyclin D2 and cyclin E were not increased significantly after serum stimulation in mock-infected cells, whereas they were decreased in MHV-infected cells, suggesting the possibility that MHV infection may induce cyclin D2 and cyclin E degradation. Our data suggested that a reduction in the amounts of G1 cyclin-Cdk complexes in MHV-infected cells led to a reduction in Cdk activities and insufficient hyperphosphorylation of pRb, resulting in inhibition of the cell cycle in the G0/G1 phase.  相似文献   

18.
D. P. Fox 《Chromosoma》1966,20(2):173-194
The structure and frequency of chromatid interchange types in C-metaphase cells of embryos of Schistocerca gregaria are described at the first mitosis following irradiation at the G 2 stage of interphase. The relationship between the different interchange types and the organisation of the interphase nucleus is discussed. It is concluded that most chromatid interchanges are induced between polarised chromosomes though the occurrence of loops and to a lesser extent of terminal overlapping may subsequently modify the appearance of these aberrations at metaphase.  相似文献   

19.
Seedlings of Crepis capillaris were irradiated after pulse-labelling with tritiated thymidine ([3H]TdR), and both chromosomal aberrations and presence of silver grains were recorded in the same metaphase cells at various intervals throughout the whole mitotic cycle. The following results were obtained: (a) irradiated roots were homogeneous with respect to the number of aberrations, and heterogenous with respect to labelling index (LI); (b) time-effect curves for labelled (L) and unlabelled (U) cells showed no significant difference from one another; (c) no significant quantitative difference of aberration spectra produced in S and G2 stages was found. These results support the view that the major factor which determines both quantitative and qualitative variation in the production of chromosomal aberrations by radiation is the time lapse between irradiation and fixation rather than relation of the time of irradiation to the time of DNA synthesis. In addition, it was found that labelling with [3H]TdR modifies the effect of radiation on chromosomes.  相似文献   

20.
Using synchronous populations obtained by selectively detaching mitotic cells from cultures grown in monolayer, we demonstrate here that Chinese hamster ovary (CHO) cells exhibit a differential sensitivity to mutation induction by UV as a function of position in the cell cycle. When mutation induction to 6-thioguanine (TG) resistance is monitored, several maxima and minima are displayed during cell-cycle traverse, with a major maximum occurring in early S phase. Although cells in S phase are more sensitive to UV-mediated cell lethality than those in G1 or G2/M phases, there is not a strict correlation with induced mutation frequency. Fluence-response curves obtained at several times during the cell cycle yield Dq values approximating 6 J/m2. The primary survival characteristic which varies with cell cycle position is D0, ranging from 2.5 J/m2 at 6 h after mitotic selection to 5.5 J/m2 at 11 h afterward. Based on studies with asynchronous, logarithmically growing populations, as well as those mitotically selected to be synchronous, the optimum phenotypic expression time for induced TG resistance is 7–9 days and is essentially independent of both UV fluence and position in the cell cycle. All isolated mutants have altered hypozanthine—guanine phosphoribosyl transferase (HGPRT) activity, and no difference in the residual level of activity was detected among isolated clones receiving UV radiation during G1, S, or late S/G2 phases of the cell cycle. Changes in cellular morphology during cell-cycle traverse do not contribute to the differential susceptibility to UV-induced mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号