首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
The optimized method for HPLC determination of tramadol and its metabolite O-desmethyl tramadol in human plasma using sotalol as internal standard has been developed and validated by a new approach. The determination by fluorescence detection was performed on re-eluted solution, obtained after liquid–liquid extraction with ethyl acetate of the three analytes from plasma. The chromatographic separation of tramadol under a gradient elution was achieved at a temperature of 15 °C with a RP-18 column, guarded by a C18 precolumn. The mobile phase was a mixed aqueous solution containing ortho-phosphoric acid, triethylamine, acetonitrile and methanol in a complex gradient mode. The quantitative determination of tramadol was performed at different successive pairs of excitation/emission wavelengths (200/300 nm, 200/295 nm, 212/305 nm) with lower limits of quantification: LLOQ = 4.078 ng/ml for tramadol, respectively LLOQ = 3.271 ng/ml for O-desmethyl tramadol. For the LLOQ limits, were calculated the values of the coefficient of variation and difference between mean and the nominal concentration. For tramadol analyte they were CV% = 5.147% and bias% = − 7.273% in the intra-days and CV% = 4.894% and bias% = 0.836% in the between-days assay, respectively for the metabolite O-desmethyl tramadol they were CV% = 11.517% and bias% = 0.337% in the intra-days and CV% = 6.41% and bias% = 3.259% in the between-days assay.

In addition, the stabilities of the analytes were verified in different conditions. Both, tramadol and its metabolite proved to be stable in plasma for four weeks, frozen at − 20 °C, but also for 48 h at 15 °C in the re-eluted solution after liquid–liquid extraction.  相似文献   


2.
A simple, rapid and precise HPLC method has been developed for the assay of verapamil in human plasma. The clean up of the plasma samples was tested using several adsorbents for solid-phase extraction and best recovery was obtained using mixed-mode cartridges (HLB - hydrophilic-lipophilic balance) ranging between 94.70 and 103.71%. HPLC separation was performed with isocratic elution on Lichrospher 60 RP-select B column (250 mm × 4 mm I.D., 5 μm particle size). The mobile phase was 40% acetonitrile and 0.025 mol/L KH2PO4 with pH 2.5 at flow rate of 1 mL/min. Diltiazem was used as internal standard and the detection wavelength was 200 nm. The calibration curves were linear in the range of 10–500 ng/mL. The developed method is convenient for routine analysis of verapamil in human plasma.  相似文献   

3.
Bacterial β-ketoacyl-ACP reductase (FabG) and the β-ketoacyl reductase domain in mammalian fatty acid synthase (FAS) have the same function and both are rendered as the novel targets for drugs. Herein we developed a convenient method, using an available compound ethyl acetoacetate (EAA) as the substitutive substrate, to measure their activities by monitoring decrease of NADPH absorbance at 340 nm. In addition to the result, ethyl 3-hydroxybutyrate (EHB) was detected by HPLC analysis in the reaction system, indicating that EAA worked effectively as the substrate of FabG and FAS since its β-keto group was reduced. Then, the detailed kinetic characteristics, such as optimal ionic strength, pH value and temperature, and kinetic parameters, for FabG and FAS with this substitutive substrate were determined. The Km and kcat values of FabG obtained for EAA were 127 mM and 0.30 s− 1, while those of this enzyme for NADPH were 10.0 μM and 0.59 s− 1, respectively. The corresponding Km and kcat values of FAS were 126 mM and 4.63 s− 1 for EAA; 8.7 μM and 4.09 s− 1 for NADPH. Additionally, the inhibitory kinetics of FabG and FAS, by a known inhibitor EGCG, was also studied.  相似文献   

4.
We investigated the thermotropic phase behavior of the distearoylphosphatidylcholine (DSPC)–cholesterol binary bilayer membrane as a function of the cholesterol composition (Xch) by fluorescence spectroscopy using 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and differential scanning calorimetry (DSC). The fluorescence spectra, each of which has a single maximum, showed that the wavelength at the maximum intensity (λmax) changed depending on the bilayer state: ca. 440 nm for the lamellar gel (Lβ′ or Lβ) and the liquid ordered (Lo) phases, ca. 470 nm for the ripple gel (Pβ′) phase and ca. 490 nm for the liquid crystalline (L) phase, respectively. The transition temperatures were determined from the temperature dependences of the λmax and endothermic peaks of the DSC thermograms. Both measurements showed that the pretransition disappears around Xch = 0.035. The constructed temperature–Xch phase diagram indicated that the phase behavior of the binary bilayer membrane at Xch ≤ 0.15 is similar to that of general liquid–solid equilibrium for a binary system where both components are completely miscible in the liquid phase and completely immiscible in the solid phase. It was also revealed that the diagram has two characteristic points: a congruent melting point at Xch = 0.08 and a peritectic-like point at Xch = 0.15. The hexagonal lattice model was used for the interpretation of the phase behavior of the binary bilayer membrane. These characteristic compositions well correspond to the bilayer states in each of which cholesterol molecules are regularly distributed in the hexagonal lattice in a different way. That is, each composition of 0.035, 0.08 and 0.15 is nearly equal to that for the binary bilayer membrane which is entirely occupied with units, each composed of a cholesterol and 30 surrounding DSPC molecules within the next-next-next nearest neighbor sites (Unit (1:30): Lβ(1:30)), with units, each of a cholesterol and 12 surrounding DSPC molecules within the next nearest sites (Unit (1:12): Lβ(1:12)) or with units, each of a cholesterol and 6 surrounding DSPC molecules at the nearest neighbor sites (Unit (1:6): Lβ(1:6)), respectively. Therefore, the eutectic behavior observed in the phase diagram was fully explainable in terms of a kind of phase separation between two different types of regions with different types of regular distributions of cholesterol. Further, the Lo phase was found in the higher Xch-region (Xch > 0.15). No endothermic peak over the temperature range from 10 to 80 °C at Xch = 0.50 suggested that the single Lo phase can exist at Xch > 0.50.  相似文献   

5.
The zinc content of 3 μL of vegetal samples (tree leaves, lichens and grape sap) atomized from a Pt-wire in the methane–air flame has been determined by atomic absorption spectrometry. The effect of gas flow rates and the atomization height in the flame on the absorption of zinc was evaluated at 213.9 nm. The best results were obtained at a height of 5 mm and gas flow rates of 200 L/h air and 26 L/h methane, respectively. The effect of Na, K, Ca, Mg, SO42−, and PO43− on the absorption of zinc was studied too. The detection limit of 0.40 ± 0.21 ng was obtained at a significance level of 0.05, using the two-step Neyman–Pearson criterion. The zinc content of the samples has been determined with continuous nebulization and by atomization from the Pt-wire, using both the standard calibration curve and the standard addition method. The results of the two procedures agree within the determination errors.  相似文献   

6.
The UV-absorption, fluorescence and CD spectra of aps 23 bp oligoduplexes were performed for potential diagnostic purpose. These oligonucleotide sequences were mimicked from natural mutations (mitochondrial genome) of human population (unpublished). This work was designed on the basis of hybridization of non-self complementary oligoduplexes (aps) containing no mismatch, one-mismatch and two-mismatches. Since melting temperature™ is dependent on concentration of the oligoduplex, various concentrations were used in this study protocol. The thermal spectra profiles (UV absorbance and fluorescence) of these oligoduplexes (aps) are different for a particular concentration, and can be implicated for mutations. − dF/dT (or dA/dT) vs T, lnK (or RlnK) vs TM, ΔG vs TM, ΔS vs TM and ΔH vs TM are also variable for those sequences. All these thermodynamic data were calculated from absorbance (at 260 nm) data. On the contrary to the 23 bp oligoduplexes (aps), the PCR products of 97 bp and 256 bp length were genotyped with ETBR (excitation 530 nm, emission 600 nm) fluorimetrically. But our attempts to genotype these PCR sequences with isothermal UV absorbance spectroscopy were unsuccessful. Isothermal UV absorbance spectra has a limitation of sequence length. However, the structural conformation (all B-type) of the oligoduplexes (aps) was determined using CD. The minor discrepancy in CD spectra of these oligoduplexes are not significant for mutational analysis. 97 bp nested PCR product was an amplicon having either GcT or AcC mutation of mitochondria of normal human population, whereas 256 bp PCR product was an amplicon of human BRCA2 gene (NCBI Accession No. AY151039) of chromosome 13 having either A or G mutation at position − 26.  相似文献   

7.
Nitrosylmyoglobin (MbFeIINO), which is believed to have a protective role during ischemia and reperfusion injury, was oxidized by tert-butyl hydroperoxide (t-BuOOH), and by hydrogen peroxide (H2O2) to the nitrite anion and metmyoglobin (MbFeIII). Further characterization of the reaction of MbFeIINO with excess of t-BuOOH was investigated with respect to reaction stoichiometry, temperature and pH dependence. It was found that the reaction between MbFeIINO with excess of t-BuOOH followed a simple stoichiometry and had moderate pH and temperature dependence with the activation parameters ΔH = 57.4 ± 1.4 kJ mol- 1 and ΔS = - 112.0 ± 5.1 J mol- 1 K- 1, which is consistent with an associative reaction mechanism. Moreover, t-BuOOH-induced oxidation of MbFeIINO did not result in any detectable formation of the hypervalent myoglobin (Mb) species, i.e. perferrylmyoglobin, (MbFeIV = O) or ferrylmyoglobin (MbFeIV = O), and hereby differed from H2O2-induced oxidation of MbFeIINO, which results in the formation of MbFeIV = O. Based on the obtained results and on published data, different mechanisms for the reaction of the MbFeIINO with t-BuOOH and H2O2 are proposed.  相似文献   

8.
This paper deals with the chiral separation of triiodothyronine (T3) and thyroxine (T4) by HPLC and micro-HPLC. The separation of T3 and T4 is of great pharmaceutical and clinical interest, since the enantiomers exhibit different pharmacological activities. The HPLC measurements were performed on a chiral stationary ligand-exchange phase using l-4-hydroxyproline bonded via 3-glycidoxypropyltrimethoxysilane to silica gel as a selector. Also a chiral teicoplanin (Chirobiotic ™®) phase was used.

In micro-HPLC the chiral separation behaviour of l-4-hydroxyproline, and of the macrocyclic antibiotics teicoplanin and teicoplanin aglycone was investigated for the enantioseparation of T3 and T4. l-4-Hydroxyproline was bonded to 3 μm and the glycopeptide antibiotics were bonded to 3.5 μm silica gel and separations were accomplished by microbore HPLC columns (10 cm × 1 mm I.D.). With both techniques and all chiral selectors investigated T3 and T4 were baseline resolved. micro-HPLC was found to be superior to analytical HPLC with respect to low consumption of packing material, mobile phase and analyte.  相似文献   


9.
Hypoxia, a dissolved oxygen concentration (DO) below 2 mg l– 1, is a significant stressor in many estuarine ecosystems. Many sedentary organisms, unable to move to avoid hypoxic areas, have metabolic and behavioral adaptations to hypoxic stress. We tested the effects of hypoxia on the behavior and mortality of the clam Macoma balthica, using four levels of dissolved oxygen in flow-through tanks. We used five replicates of each of four treatments: (1) Hypoxic (DO mean ± SE = 1.1 ± 0.06 mg O2 l– 1), (2) Moderately hypoxic (DO 2.6 ± 0.05 mg O2 l– 1), (3) Nearly normoxic (DO 3.2 ± 0.04 mg O2 l– 1), (4) Normoxic (DO = 4.9 ± 0.13 mg O2 l– 1). We lowered the dissolved oxygen with a novel fluidized mud-bed, designed to mimic field conditions more closely than the common practice of solely bubbling nitrogen or other gasses. This method for lowering the DO concentrations for a laboratory setup was effective, producing 1.4 l min–1 of water with a DO of 0.8 mg O2 l– 1 throughout the experiment. The setup greatly reduced the use of compressed nitrogen and could easily be scaled up to produce more low-DO water if necessary. The lethal concentration for 50% of the M. balthica population (LC50) was 1.7 mg O2 l– 1 for the 28-day experimental period. M. balthica decreased its burial depth under hypoxic and moderately hypoxic (~2.5 mg O2 l– 1) conditions within 72 hours of the onset of hypoxia. By the sixth day of hypoxia the burial depth had been reduced by 26 mm in the hypoxic tanks and 10 mm in the moderately hypoxic tanks. Because reduced burial depth makes the clams more vulnerable to predators, these results indicate that the sub-lethal effects of hypoxia could change the rate of predation on M. balthica in the field.  相似文献   

10.
This study examined the effects of Ramadan fasting on anaerobic performances and their diurnal fluctuations. In a balanced and randomized study design, 12 subjects were measured for maximal power (Pmax; force-velocity test), peak power (Ppeak), and mean power (Pmean) with the Wingate test at 07:00, 17:00, and 21:00 h on four different occasions: one week before Ramadan (BR), the second week of Ramadan (SWR), the fourth week of Ramadan (ER), and two weeks after Ramadan (AR). There was an interval of 28 h between any two successive tests. Oral temperature was measured before each test. Under each condition, the results showed a time-of-day effect on oral temperature. Analysis of variance revealed a significant (Ramadan×time-of-day of test) interaction effect on Pmax. This variable improved significantly from morning to evening before Ramadan (1.1±0.2 W · kg-1), during the second week of Ramadan (0.6±0.2 W · kg-1), and two weeks after the end of Ramadan (0.9±0.2 W · kg-1). However, daily fluctuations disappeared during the fourth week of Ramadan. For Ppeak and Pmean, there was no significant Ramadan×test-time interaction. These variables improved significantly from morning to evening before Ramadan ([1±0.3 W · kg-1] for Ppeak and [1.7±1.6 W · kg-1] for Pmean) and in the second week of Ramadan ([0.9±0.6 W · kg-1] for Ppeak and [1.7±1.5 W · kg-1] for Pmean). However, they were not affected by time-of-day in the fourth week of Ramadan. Considering the effect of Ramadan on anaerobic performances, in comparison with before Ramadan, no significant difference was observed during Ramadan at 07:00 h. The variables were significantly lower in the second week of Ramadan and in the fourth week of Ramadan at 17:00 h and 21:00 h. Pmean was not affected during the second week of Ramadan. In conclusion, the time-of-day effect on anaerobic power variables tends to disappear during Ramadan. In comparison with the period before Ramadan, anaerobic performances were unaffected in the morning but impaired in the evening during Ramadan.  相似文献   

11.
Circadian rhythms of DNA synthesis in nasopharyngeal carcinoma cells   总被引:4,自引:0,他引:4  
Nasopharyngeal carcinoma (NPC) occurs frequently in southern China. The circadian rhythm of DNA synthesis of a poorly differentiated NPC human cell line (CNE2) was investigated as an experimental prerequisite for designing chrono-chemotherapy schedules for patients with this disease. Twenty-two nude mice with BALB/c background were synchronized alternatively in 12 h of light and 12 h of darkness (LD12:12) for at least 3 wk prior to the transplantation of a CNE2 tumor fragment into each flank (area of ∼2×2 mm2). Ten days later, a tumor sample (area of ∼5 mm2) was obtained at 3, 9, 15, and 21 h after light onset (HALO) alternatively from different sites in each mouse. Single-cell suspensions were prepared and stained with propidium iodide. Cellular DNA content was measured with flow cytometry. Data were analyzed by ANOVA and cosinor methods. The average proportion of tumor cells in G1, S or G2-M phase varied according to circadian time with statistical significance. The maximum occurred at 9 HALO for G1, 2 HALO for S and 21 HALO for G2-M phase cells. The approximate average distribution patterns of G1 and G2-M phases of cosine curve was 24 h. This was not the case for S-phase cells, which displayed a bimodal temporal pattern. Inter-individual variability in peak time was large, possibly due to relatively sparse sampling time. Nevertheless, no more than 6% of the time series displayed a maximum at 3 HALO for G1, 21 HALO for S and 15 HALO for G2-M. The cell cycle distribution of this human NPC cell line displayed circadian regulation following implantation into nude mice. The mechanisms involved in this rhythm and its relevance to the chrono-chemotherapy of patients deserve further investigation.  相似文献   

12.
Workers involved in the manufacture of drug substances may be exposed to active pharmaceuticals by inhalation of drug dusts or droplets which has been considered the main exposure route. The proposed HPLC method allowed to determine sulpiryde, hydroxyurea and dyprophylline in the concentration range of 0.01–0.187 mg/m3, 0.001–0.08 mg/m3 and 0.01–0.40 mg/m3 for sulpiryde, hydroxyurea and dyprophylline, respectively, when 480 L of air sample was collected on the glass fibre filters. Sulpiryde was extracted with a solvent system consisting of acetonitrile–phosphate buffer at pH 3 (85:15, v/v), while the best efficiency of extraction for hydroxyurea and dyprophylline was achieved using water. HPLC analysis of sulpiryde with fluorescence detection was more sensitive (LOD = 3.1 μg/L) in comparison with UV detection (LOD = 84.4 μg/L).  相似文献   

13.
The effect of vitamin C (ascorbate) on oxidative DNA damage was examined by first incubating cells with dehydroascorbate, which boosts the intracellular concentration of ascorbate, and then exposing cells to H2O2. Oxidative DNA damage was estimated by the analysis of 5-hydroxy-2′-deoxycytidine (oh5dCyd) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (oxo8dGuo). The presence of a high concentration of ascorbate (30 mM), compared to the absence of ascorbate in cells, when exposed to H2O2 (200 μM), resulted in a remarkable sensitization of oh5dCyd from 2.7 ± 0.6 to 40.8 ± 6.1 lesions /106 dCyd (15-fold). In contrast, the level of oxo8dGuo increased from 8.4 ± 0.4 to 12.1 ± 0.5 lesions/106 dGuo (50%). The formation of oh5dCyd was also observed at lower concentrations of intracellular ascorbate and exogenous H2O2. Additional studies showed that replacement of H2O2 with tert-butyl hydroperoxide completely abolished damage, and that preincubation with iron and desferroxamine increased and decreased this damage, respectively. The latter studies suggest that a Fenton reaction is involved in the mechanism of damage. In conclusion, we report a novel model system in which ascorbate sensitizes H2O2-induced oxidative DNA damage in cells, leading to elevated levels of oh5dCyd and oxo8dGuo, with a strong bias toward the formation of oh5dCyd.  相似文献   

14.
The eclosion and oviposition rhythms of flies from a population of Drosophila melanogaster maintained under constant conditions of the laboratory were assayed under constant light (LL), constant darkness (DD), and light/dark (LD) cycles of 10:10 h (T20), 12:12 h (T24), and 14:14 h (T28). The mean (±95% confidence interval; CI) free-running period (τ) of the oviposition rhythm was 26.34 ± 1.04 h and 24.50 ± 1.77 h in DD and LL, respectively. The eclosion rhythm showed a τ of 23.33 ± 0.63 h (mean ± 95% CI) in DD, and eclosion was not rhythmic in LL. The τ of the oviposition rhythm in DD was significantly greater than that of the eclosion rhythm. The eclosion rhythm of all 10 replicate vials entrained to the three periodic light regimes, T20, T24, and T28, whereas the oviposition rhythm of only about 24 and 41% of the individuals entrained to T20 and T24 regimes, respectively, while about 74% of the individuals assayed in T28 regimes showed entrainment. Our results thus clearly indicate that the τ and the limits of entrainment of eclosion rhythm are different from those of the oviposition rhythm, and hence this reinforces the view that separate oscillators may regulate these two rhythms in D. melanogaster.  相似文献   

15.
16.
Ferritins are ubiquitous iron storage and detoxification proteins distributed throughout the plant and animal kingdoms. Mammalian ferritins oxidize and accumulate iron as a ferrihydrite mineral within a shell-like protein cavity. Iron deposition utilizes both O2 and H2O2 as oxidants for Fe2+ where oxidation can occur either at protein ferroxidase centers or directly on the surface of the growing mineral core. The present study was undertaken to determine whether the nature of the mineral core formed depends on the protein ferroxidase center versus mineral surface mechanism and on H2O2 versus O2 as the oxidant. The data reveal that similar cores are produced in all instances, suggesting that the structure of the core is thermodynamically, not kinetically controlled. Cores averaging 500 Fe/protein shell and diameter  2.6 nm were prepared and exhibited superparamagnetic blocking temperatures of 19 and 22 K for the H2O2 and O2 oxidized samples, respectively. The observed blocking temperatures are consistent with the unexpectedly large effective anisotropy constant Keff = 312 kJ/m3 recently reported for ferrihydrite nanoparticles formed in reverse micelles [E.L. Duarte, R. Itri, E. Lima Jr., M.S. Batista, T.S. Berquó and G.F. Goya, Large Magnetic Anisotropy in ferrihydrite nanoparticles synthesized from reverse micelles, Nanotechnology 17 (2006) 5549–5555.]. All ferritin samples exhibited two magnetic phases present in nearly equal amounts and ascribed to iron spins at the surface and in the interior of the nanoparticle. At 4.2 K, the surface spins exhibit hyperfine fields, Hhf, of 436 and 445 kOe for the H2O2 and O2 samples, respectively. As expected, the spins in the interior of the core exhibit larger Hhf values, i.e. 478 and 486 kOe for the H2O2 and O2 samples, respectively. The slightly smaller hyperfine field distribution DHhf for both surface (78 kOe vs. 92 kOe) and interior spins (45 kOe vs. 54 kOe) of the O2 sample compared to the H2O2 samples implies that the former is somewhat more crystalline.  相似文献   

17.
The effects of vinorelbine (VRL) on the circadian rhythms in body temperature and locomotor activity were investigated in unrestrained B6D2F1 mice implanted with radio-telemetry transmitters. A single intravenous VRL dose (24 or 12 mg/kg) was given at 7 h after light onset (HALO), a time of high VRL toxicity, and resulted in transient suppression of temperature and activity circadian rhythms in mice kept in light-dark (LD) 12h:12h. Such suppression was dose-dependent. It occurred within 1-5 d after VRL dosing. Recovery of both rhythms was partially complete within 5 d following the high dose and within 2 or 3 d after the low dose and was not influenced by suppression of photoperiodic synchronization by housing in continuous darkness. Moreover, VRL induced a dose-dependent relative decrease in amplitude and phase shift of the temperature circadian rhythm. The mesor and amplitude of the activity rhythm were markedly reduced following the VRL administration. The relevance of VRL dosing time was studied in mice housed in LD 12h:12h. Vinorelbine was injected weekly (20 mg/kg/injection) for 3 wk at 6 or 18 HALO. Vinorelbine treatment ablated the rest-activity and temperature rhythms 3-6 d after each dose, with fewer alterations after VRL dosing at 18 HALO compared to 6 HALO, especially for the body temperature rhythm. There was at least partial recovery 1 wk after dosing, suggesting the weekly schedule of drug treatment is acceptable for therapeutic purposes. Our findings demonstrate that VRL can transiently, yet profoundly, alter circadian clock function. Vinorelbine-induced circadian dysfunction may contribute to the toxicokinetics of this and possibly other anticancer drugs.  相似文献   

18.
Dextran infusions in humans lead to a reduction of low density lipoproteins (LDL) in the plasma compartment. The interaction of dextran with human LDL was investigated in vitro by static and dynamic light scattering. The experiments were performed with human LDL (apoB concentration 0.75 g l−1) and dextran (Mw=40 000 and 70 000 g mol−1) at 25°C. The dextran concentrations after mixing were 10 and 50 g l−1. The hydrodynamic radius for native LDL was found to be RH=12.9 nm. The addition of dextran induces the formation of LDL associates with a mean radius of RH≈200 nm. These findings show that even non-sulphated polysaccharides interact with LDL. The dextran-dependent formation of LDL associates detected in vitro could be the reason for the in vivo effect of dextran on the lipid metabolism.  相似文献   

19.
Tea (Camellia sinensis) catechins have been studied for disease prevention. These compounds undergo oxidation and produce H2O2. We have previously shown that holding tea solution or chewing tea leaves generates high salivary catechin levels. Herein, we examined the generation of H2O2 in the oral cavity by green tea solution or leaves. Human volunteers holding green tea solution (0.1-0.6%) developed salivary H2O2 with Cmax = 2.9-9.6 μM and AUC0 → ∞ = 8.5-285.3 μM min. Chewing 2 g green tea leaves produced higher levels of H2O2 (Cmax = 31.2 μM, AUC0 → ∞ = 1290.9 μM min). Salivary H2O2 correlated with catechin levels and with predicted levels of H2O2 (Cmax(expected) = 36 μM vs Cmax(determined) = 31.2 μM). Salivary H2O2 and catechin concentrations were similar to those that are biologically active in vitro. Catechin-generated H2O2 may, therefore, have a role in disease prevention by green tea.  相似文献   

20.
Due to the ubiquity of epoxy resin compounds and their potential role in increasing the risk for reproductive dysfunction and cancer, the need for an assessment of human exposure is urgent. Therefore, we developed a method for measuring bisphenol A (BPA) and bisphenol A diglycidyl ether (BADGE) metabolites in human blood samples using high-performance liquid chromatography–electrospray ionization mass spectrometry (LC–MS). Human blood samples were processed using enzymatic deconjugation of the glucuronides followed by a novel sample preparation procedure using a solid-phase-cartridge column. This selective analytical method permits rapid detection of the metabolites, free BPA and a hydrolysis product of BADGE (BADGE-4OH) with detection limits in the low nanogram per milliliter range (0.1 ng ml−1 of BPA and 0.5 ng ml−1 of BADGE-4OH). The sample extraction was achieved by Oasis HLB column on gradient elution. The recoveries of BPA and BADGE-4OH added to human plasma samples were above 70.0% with a standard deviation of less than 5.0%. This selective, sensitive and accurate method will assist in elucidating potential associations between human exposure to epoxy-based compounds and adverse health effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号