首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Importin alpha is well known as an adaptor that functions with Importin beta in the nuclear import of proteins containing specific nuclear localization signals (NLSs). We show here that either an excess or a lack of Importin alpha blocks nuclear envelope (NE) assembly in vitro, and our data suggest that soluble Importin alpha functions in NE assembly in conjunction with NLS-containing partner proteins. Surprisingly, a significant proportion of Importin alpha is found to fractionate with Xenopus egg membranes. We demonstrate that membrane association of Importin alpha is regulated by phosphorylation. Using mutant forms of Importin alpha that either do not bind membranes or are not released from them by phosphorylation, we provide evidence that membrane-associated Importin alpha is required for NE formation. Unlike other functions of Importin alpha, this membrane-associated activity does not require interaction with NLS proteins.  相似文献   

3.
4.
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport.  相似文献   

5.
Nuclear import of many cellular and viral proteins is mediated by short nuclear localization signals (NLS) that are recognized by intracellular receptor proteins belonging to the importin/karyopherin alpha and beta families. The primary structure of NLS is not well defined, but most contain at least three basic amino acids and harbor the relative consensus sequence K(K/R)X(K/R). We have studied the nuclear import of the Borna disease virus p10 protein that lacks a canonical oligobasic NLS. It is shown that the p10 protein exhibits all characteristics of an actively transported molecule in digitonin-permeabilized cells. Import activity was found to reside in the 20 N-terminal p10 amino acids that are devoid of an NLS consensus motif. Unexpectedly, p10-dependent import was blocked by a peptide inhibitor of importin alpha-dependent nuclear translocation, and the transport activity of the p10 N-terminal domain was shown to correlate with the ability to bind to importin alpha. These findings suggest that nuclear import of the Borna disease virus p10 protein occurs through a nonconventional karyophilic signal and highlight that the cellular importin alpha NLS receptor proteins can recognize nuclear targeting signals that substantially deviate from the consensus sequence.  相似文献   

6.
The active transport of proteins into and out of the nucleus is mediated by specific signals, the nuclear localization signal (NLS) and nuclear export signal (NES), respectively. The best characterized NLS is that of the SV40 large T antigen, which contains a cluster of basic amino acids. The NESs were first identified in the protein kinase inhibitor (PKI) and HIV Rev protein, which are rich in leucine residues. The SV40 T-NLS containing transport substrates are carried into the nucleus by an importin alpha/beta heterodimer. Importin alpha recognizes the NLS and acts as an adapter between the NLS and importin beta, whereas importin beta interacts with importin alpha bound to the NLS, and acts as a carrier of the NLS/importin alpha/beta trimer. It is generally thought that importin alpha and beta are part of a large protein family. The leucine rich NES-containing proteins are exported from the nucleus by one of the importin beta family molecules, CRM1/exportin 1. A Ras-like small GTPase Ran plays a crucial role in both import/export pathways and determines the directionality of nuclear transport. It has recently been demonstrated in living cells that Ran actually shuttles between the nucleus and the cytoplasm and that the recycling of Ran is essential for the nuclear transport. Furthermore, it has been shown that nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. This review largely focuses on the issue concerning the functional divergence of importin alpha family molecules and the role of Ran in nucleocytoplasmic protein transport.  相似文献   

7.
Importin alpha is the nuclear import receptor that recognizes classical monopartite and bipartite nuclear localization signals (NLSs). The structure of mouse importin alpha has been determined at 2.5 A resolution. The structure shows a large C-terminal domain containing armadillo repeats, and a less structured N-terminal importin beta-binding domain containing an internal NLS bound to the NLS-binding site. The structure explains the regulatory switch between the cytoplasmic, high-affinity form, and the nuclear, low-affinity form for NLS binding of the nuclear import receptor predicted by the current models of nuclear import. Importin beta conceivably converts the low- to high-affinity form by binding to a site overlapping the autoinhibitory sequence. The structure also has implications for understanding NLS recognition, and the structures of armadillo and HEAT repeats.  相似文献   

8.
Tetradecylthioacetic acid (TTA) is a hypolipidemic antioxidant with immunomodulating properties involving activation of peroxisome proliferator-activated receptors (PPARs) and proliferation of mitochondria. This study aimed to penetrate the effect of TTA on the development of atherosclerotic lesions in apolipoprotein (apo)-E-/- mice fed a high-fat diet containing 0.3% TTA for 12 weeks. These mice displayed a significantly less atherosclerotic development vs control. Plasma cholesterol was increased by TTA administration and triacylglycerol (TAG) levels in plasma and liver were decreased by TTA supplementation, the latter, probably due to increased mitochondrial fatty acid oxidation and reduced lipogenesis. TTA administration also changed the fatty acid composition in the heart, and the amount of arachidonic acid (ARA) and eicosapentaenoic acid (EPA) was reduced and increased, respectively. The heart mRNA expression of inducible nitric oxidase (NOS)-2 was decreased in TTA-treated mice, whereas the mRNA level of catalase was increased. Finally, reduced plasma levels of inflammatory mediators as IL-1α, IL-6, IL-17, TNF-α and IFN-γ were detected in TTA-treated mice. These data show that TTA reduces atherosclerosis in apoE-/- mice and modulates risk factors related to atherosclerotic disorders. TTA probably acts at both systemic and vascular levels in a manner independent of changes in plasma cholesterol, and triggers TAG catabolism through improved mitochondrial function.  相似文献   

9.
10.
Importin α1 can bind classical nuclear localization signals (NLSs) in two NLS-binding sites, known as "major" and "minor." The major site is located between ARM repeats 2-4, whereas the minor site spans ARM 7-8. In this study, we have characterized the cellular localization of human phospholipid scramblase 4 (hPLSCR4), a member of the phospholipid scramblase protein family. We identified a minimal NLS in hPLSCR4 ((273)GSIIRKWN(280)) that contains only two basic amino acids. This NLS is both necessary for nuclear localization of hPLSCR4 in transfected HeLa cells and sufficient for nuclear import of a non-diffusible cargo in permeabilized cells. Mutation of only one of the two basic residues, Arg(277), correlates with loss of nuclear localization, suggesting this amino acid plays a key role in nuclear transport. Crystallographic analysis of mammalian importin α1 in complex with the hPLSCR4-NLS reveals this minimal NLS binds specifically and exclusively to the minor binding site of importin α. These data provide the first structural and functional evidence of a novel NLS-binding mode in importin α1 that uses only the minor groove as the exclusive site for nuclear import of nonclassical cargos.  相似文献   

11.
p27(Kip1) (p27), a CDK inhibitor, migrates into the nucleus, where it controls cyclin-CDK complex activity for proper cell cycle progression. We report here that the classical bipartite-type basic amino-acid cluster and the two downstream amino acids of the C-terminal region of p27 function as a nuclear localization signal (NLS) for its full nuclear import activity. Importin alpha3 and alpha5, but not alpha1, transported p27 into the nucleus in conjunction with importin beta, as evidenced by an in vitro transport assay. It is known that Akt phosphorylates Thr 157 of p27 and this reduces the nuclear import activity of p27. Using a pull-down experiment, 14-3-3 was identified as the Thr157-phosphorylated p27NLS-binding protein. Although importin alpha5 bound to Thr157-phosphorylated p27NLS, 14-3-3 competed with importin alpha5 for binding to it. Thus, 14-3-3 sequestered phosphorylated p27NLS from importin alpha binding, resulting in cytoplasmic localization of NLS-phosphorylated p27. These findings indicate that 14-3-3 suppresses importin alpha/beta-dependent nuclear localization of Thr157-phosphorylated p27, suggesting implications for cell cycle disorder in Akt-activated cancer cells.  相似文献   

12.
13.
14.
The ability to orchestrate the transport of proteins between nucleus and cytoplasm provides cells with a powerful regulatory mechanism. Selective translocation between these compartments is often used to propagate cellular signals, and it is an intimate part of the processes that control cell division, viral replication, and other cellular events. Therefore, precise experimental control over protein localization, through the agency of light, would provide a powerful tool for the study and manipulation of these events. To this end, a prototype photoregulated nuclear localization signal (NLS) was derived from a native NLS. A library of 30 mutants of the bipartite NLS from Xenopus laevis nucleoplasmin containing a novel, photoisomerizable amino acid was prepared by parallel, solid-phase synthesis and screened in vitro for binding to the nuclear import receptor karyopherin alpha, which mediates the nuclear import of cellular proteins. A single peptide was identified in which the cis and trans photoisomers bind the receptor differentially. The strategy used to obtain this peptide is systematic and empirical; therefore, it is potentially applicable to any peptide-receptor system.  相似文献   

15.
16.
Human lens epithelium-derived growth factor (LEDGF)/p75 protein forms a specific nuclear complex with human immunodeficiency virus type 1 (HIV-1) integrase and is essential for nuclear localization and chromosomal association of the viral protein. We now studied nuclear import of LEDGF/p75 in live and semipermeabilized cells. We show that nuclear import of LEDGF/p75 is GTP-, Ran-, importin-alpha/beta-, and energy-dependent and that the protein competes with the canonical SV40 large T antigen nuclear localization signal (NLS) for nuclear import receptors. We identified the NLS of LEDGF/p75 through deletion analysis and site-directed mutagenesis. The LEDGF/p75 NLS, 148GRKRKAEKQ156, belongs to the canonical SV40-like family. Fusion of this short peptide to the amino terminus of Escherichia coli beta-galactosidase rendered the fusion protein nuclear, confirming that the LEDGF/p75 NLS is transferable. Moreover, a single amino acid change in the NLS was sufficient to exclude the mutant LEDGF/p75 protein from the nucleus and abolish nuclear import of HIV-1 integrase.  相似文献   

17.
Classical protein import, mediated by the binding of a classical nuclear localization signal (NLS) to the NLS receptor, karyopherin/importin alpha, is the most well studied nuclear transport process. Classical NLSs are either monopartite sequences that contain a single cluster of basic amino acids (Lys/Arg) or bipartite sequences that contain two clusters of basic residues separated by an unconserved linker region. We have created mutations in conserved residues in each of the three NLS-binding sites/regions in Saccharomyces cerevisiae karyopherin alpha (SRP1). For each mutant we have analyzed binding to both a monopartite and a bipartite NLS cargo in vitro. We have also expressed each karyopherin alpha mutant in vivo as the only cellular copy of the NLS receptor and examined the impact on cell growth and import of both monopartite and bipartite NLS-containing cargoes. Our results reveal the functional significance of specific residues within karyopherin alpha for NLS cargo binding. A karyopherin alpha variant with a mutation in the major NLS-binding site exhibits decreased binding to both monopartite and bipartite NLS cargoes, and this protein is not functional in vivo. However, we also find that a karyopherin alpha variant with a mutation in the minor NLS-binding site, which shows decreased binding only to bipartite NLS-containing cargoes, is also not functional in vivo. This suggests that the cell is dependent on the function of at least one bipartite NLS cargo that is imported into the nucleus by karyopherin alpha. Our experiments also reveal functional importance for the linker-binding region. This study provides insight into how changes in binding to cellular NLS sequences could impact cellular function. In addition, this work has led to the creation of conditional alleles of karyopherin alpha with well characterized defects in NLS binding that will be useful for identifying and characterizing novel NLS cargoes.  相似文献   

18.
19.
ANG II promotes inflammation through nuclear factor-kappaB (NF-kappaB)-mediated induction of cytokines and reactive oxygen species (ROS). The aim of the present study was to examine the effect of tetradecylthioacetic acid (TTA), a modified fatty acid, on NF-kappaB, proinflammatory markers, ROS, and nitric oxide (NO) production in two-kidney, one-clip (2K1C) hypertension. The 2K1C TTA-treated group had lower blood pressure (128 +/- 3 mmHg) compared with 2K1C nontreated (178 +/- 5 mmHg, P < 0.001). The p50 and p65 subunits of NF-kappaB were higher in the clipped kidney (0.44 +/- 0.01 and 0.22 +/- 0.01, respectively) compared with controls (0.25 +/- 0.03 and 0.12 +/- 0.02, respectively, P < 0.001). In the 2K1C TTA-treated group, these values were similar to control levels. The same pattern of response was seen in the nonclipped kidney. In 2K1C hypertension, cytokines plasma were higher than in control: TNF-alpha was 13.5 +/- 2 pg/ml (P < 0.03), IL-1beta was 58.8 +/- 10 pg/ml (P = 0.003), IL-6 was 210 +/- 33 pg/ml (P < 0.001), and monocyte chemoattractant protein-1 was 429 +/- 21 pg/ml (P = 0.04). In the 2K1C TTA-treated group, these values were similar to controls, and the same pattern was seen in the clipped kidney. Clipping increased 8-iso-PGF-2alpha (P < 0.01) and decreased NO production (P < 0.01 vs. control) in the urine. TTA treatment normalized these values. NO production was also lower in clipped and nonclipped kidney (P < 0.001). After TTA treatment, these values were similar to controls. The results indicate that TTA has a potent anti-inflammatory effect in 2K1C by inhibition of p50/p65 NF-kappaB subunit activation, reduction of cytokines production and ROS, and enhanced NO production.  相似文献   

20.
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) is essential for replication of episomal EBV DNAs and maintenance of latency. Multifunctional EBNA-1 is phosphorylated, but the significance of EBNA-1 phosphorylation is not known. Here, we examined the effects on nuclear translocation of Ser phosphorylation of the EBNA-1 nuclear localization signal (NLS) sequence, 379Lys-Arg-Pro-Arg-Ser-Pro-Ser-Ser386. We found that Lys379Ala and Arg380Ala substitutions greatly reduced nuclear transport and steady-state levels of green fluorescent protein (GFP)-EBNA1, whereas Pro381Ala, Arg382Ala, Pro384Ala, and Glu378Ala substitutions did not. Microinjection of modified EBNA-1 NLS peptide-inserted proteins and NLS peptides cross-linked to bovine serum albumin (BSA) showed that Ala substitution for three NLS Ser residues reduced the efficiency of nuclear import. Similar microinjection analyses demonstrated that phosphorylation of Ser385 accelerated the rate of nuclear import, but phosphorylation of Ser383 and Ser386 reduced it. However, transfection analyses of GFP-EBNA1 mutants with the Ser-to-Ala substitution causing reduced nuclear import efficiency did not result in a decrease in the nuclear accumulation level of EBNA-1. The results suggest dynamic nuclear transport control of phosphorylated EBNA-1 proteins, although the nuclear localization level of EBNA-1 that binds to cellular chromosomes and chromatin seems unchanged. The karyopherin alpha NPI-1 (importin alpha5), a nuclear import adaptor, bound more strongly to Ser385-phosphorylated NLS than to any other phosphorylated or nonphosphorylated forms. Rch1 (importin alpha1) bound only weakly and Qip1 (importin alpha3) did not bind to the Ser385-phosphorylated NLS. These findings suggest that the amino-terminal 379Lys-Arg380 is essential for the EBNA-1 NLS and that Ser385 phosphorylation up-regulates nuclear transport efficiency of EBNA-1 by increasing its binding affinity to NPI-1, while phosphorylation of Ser386 and Ser383 down-regulates it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号