首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the effect of 15-20 s of weightlessness on lung, chest wall, and abdominal mechanics in five normal subjects inside an aircraft flying repeated parabolic trajectories. We measured flow at the mouth, thoracoabdominal and compartmental volume changes, and gastric pressure (Pga). In two subjects, esophageal pressures were measured as well, allowing for estimates of transdiaphragmatic pressure (Pdi). In all subjects functional residual capacity at 0 Gz decreased by 244 +/- 31 ml as a result of the inward displacement of the abdomen. End-expiratory Pga decreased from 6.8 +/- 0.8 cmH2O at 1 Gz to 2.5 +/- 0.3 cmH2O at Gz (P less than 0.005). Abdominal contribution to tidal volume increased from 0.33 +/- 0.05 to 0.51 +/- 0.04 at 0 Gz (P less than 0.001) but delta Pga showed no consistent change. Hence abdominal compliance increased from 43 +/- 9 to 70 +/- 10 ml/cmH2O (P less than 0.05). There was no consistent effect of Gz on tidal swings of Pdi, on pulmonary resistance and dynamic compliance, or on any of the timing parameters determining the temporal pattern of breathing. The results indicate that at 0 G respiratory mechanics are intermediate between those in the upright and supine postures at 1 G. In addition, analysis of end-expiratory pressures suggests that during weightlessness intra-abdominal pressure is zero, the diaphragm is passively tensed, and a residual small pleural pressure gradient may be present.  相似文献   

2.
We describe a method of measuring chest wall compliance (Cw) that readily detects whether respiratory muscles are relaxed. The method simulates a normal slow sigh, with the subject exhaling through a needle valve. Cw is calculated from the slope of the volume-esophageal pressure line. With relaxed subjects, repeated measurements yield similar slopes. When subjects cannot relax, the volume-pressure line is irregular and variable. In 26 subjects who could relax, Cw averaged 0.208 +/- 0.05 (SD) l/cmH2O.  相似文献   

3.
Expiratory muscle activity has been shown to occur in awake humans during lung inflation; however, whether this activity is dependent on consciousness is unclear. Therefore we measured abdominal muscle electromyograms (intramuscular electrodes) in 13 subjects studied in the supine position during wakefulness and non-rapid-eye-movement sleep. Lung inflation was produced by nasal continuous positive airway pressure (CPAP). CPAP at 10-15 cmH2O produced phasic expiratory activity in two subjects during wakefulness but produced no activity in any subject during sleep. During sleep, CPAP to 15 cmH2O increased lung volume by 1,260 +/- 215 (SE) ml, but there was no change in minute ventilation. The ventilatory threshold at which phasic abdominal muscle activity was first recorded during hypercapnia was 10.3 +/- 1.1 l/min while awake and 13.8 +/- 1 l/min while asleep (P less than 0.05). Higher lung volumes reduced the threshold for abdominal muscle recruitment during hypercapnia. We conclude that lung inflation alone over the range that we studied does not alter ventilation or produce recruitment of the abdominal muscles in sleeping humans. The internal oblique and transversus abdominis are activated at a lower ventilatory threshold during hypercapnia, and this activation is influenced by state and lung volume.  相似文献   

4.
Ventilator management decisions in acute lung injury could be better informed with knowledge of the patient's transpulmonary pressure, which can be estimated using measurements of esophageal pressure. Esophageal manometry is seldom used for this, however, in part because of a presumed postural artifact in the supine position. Here, we characterize the magnitude and variability of postural effects on esophageal pressure in healthy subjects to better assess its significance in patients with acute lung injury. We measured the posture-related changes in relaxation volume and total lung capacity in 10 healthy subjects in four postures: upright, supine, prone, and left lateral decubitus. Then, in the same subjects, we measured static pressure-volume characteristics of the lung over a wide range of lung volumes in each posture by using an esophageal balloon catheter. Transpulmonary pressure during relaxation (PLrel) averaged 3.7 (SD 2.0) cmH2O upright and -3.3 (SD 3.2) cmH2O supine. Approximately 58% of the decrease in PLrel between the upright and supine postures was due to a corresponding decrease in relaxation volume. The remaining 2.9-cmH2O difference is consistent with reported values of a presumed postural artifact. Relaxation volumes and pressures in prone and lateral postures were intermediate. To correct estimated transpulmonary pressure for the effect of lying supine, we suggest adding 3 cmH2O (95% confidence interval: -1 to +7 cmH2O). We conclude that postural differences in estimated transpulmonary pressure at a given lung volume are small compared with the substantial range of PLrel in patients with acute lung injury.  相似文献   

5.
In spontaneously breathing subjects, intrathoracic expiratory flow limitation can be detected by applying a negative expiratory pressure (NEP) at the mouth during tidal expiration. To assess whether NEP might increase upper airway resistance per se, the interrupter resistance of the respiratory system (Rint,rs) was computed with and without NEP by using the flow interruption technique in 12 awake healthy subjects, 6 nonsnorers (NS), and 6 nonapneic snorers (S). Expiratory flow (V) and Rint,rs were measured under control conditions with V increased voluntarily and during random application of brief (0.2-s) NEP pulses from -1 to -7 cmH(2)O, in both the seated and supine position. In NS, Rint,rs with spontaneous increase in V and with NEP was similar [3.10 +/- 0.19 and 3.30 +/- 0.18 cmH(2)O x l(-1) x s at spontaneous V of 1.0 +/- 0.01 l/s and at V of 1.1 +/- 0.07 l/s with NEP (-5 cmH(2)O), respectively]. In S, a marked increase in Rint,rs was found at all levels of NEP (P < 0.05). Rint,rs was 3.50 +/- 0.44 and 8.97 +/- 3.16 cmH(2)O x l(-1) x s at spontaneous V of 0.81 +/- 0.02 l/s and at V of 0.80 +/- 0.17 l/s with NEP (-5 cmH(2)O), respectively (P < 0.05). With NEP, Rint,rs was markedly higher in S than in NS both seated (F = 8.77; P < 0.01) and supine (F = 9.43; P < 0.01). In S, V increased much less with NEP than in NS and was sometimes lower than without NEP, especially in the supine position. This study indicates that during wakefulness nonapneic S have more collapsible upper airways than do NS, as reflected by the marked increase in Rint,rs with NEP. The latter leads occasionally to an actual decrease in V such as to invalidate the NEP method for detection of intrathoracic expiratory flow limitation.  相似文献   

6.
We attempted to measure diaphragmatic tension by measuring changes in diaphragmatic intramuscular pressure (Pim) in the costal and crural parts of the diaphragm in 10 supine anesthetized dogs with Gaeltec 12 CT minitransducers. During phrenic nerve stimulation or direct stimulation of the costal and crural parts of the diaphragm in an animal with the chest and abdomen open, Pim invariably increased and a linear relationship between Pim and the force exerted on the central tendon was found (r greater than or equal to 0.93). During quiet inspiration Pim in general decreased in the costal part (-3.9 +/- 3.3 cmH2O), whereas it either increased or slightly decreased in the crural part (+3.3 +/- 9.4 cmH2O, P less than 0.05). Similar differences were obtained during loaded and occluded inspiration. After bilateral phrenicotomy Pim invariably decreased during inspiration in both parts (costal -4.3 +/- 6.4 cmH2O, crural -3.1 +/- 0.6 cmH2O). Contrary to the expected changes in tension in the muscle, but in conformity with the pressure applied to the muscle, Pim invariably increased during passive inflation from functional residual capacity to total lung capacity (costal +30 +/- 23 cmH2O, crural +18 +/- 18 cmH2O). Similarly, during passive deflation from functional residual capacity to residual volume, Pim invariably decreased (costal -12 +/- 19 cmH2O, crural -12 +/- 14 cmH2O). In two experiments similar observations were made with saline-filled catheters. We conclude that although Pim increases during contraction as in other muscles, Pim during respiratory maneuvers is primarily determined by the pleural and abdominal pressures applied to the muscle rather than by the tension developed by it.  相似文献   

7.
The effects of changing blood volume within the thoracoabdominal cavity (Vtab) have been studied in four male subjects trained in respiratory maneuvers. Subjects were studied lying supine in a pressure plethysmograph with inflatable fracture splints placed around both arms and legs. Changes in Vtab were produced by inflating the splints to 30 cmH2O. Thoracic gas volume (Vtg) measured by Boyle's law, and the change in chest wall volume (delta Vw), measured by anteroposterior magnetometers on rib cage and abdomen, were measured almost simultaneously and at two respiratory system volumes. The quantity of blood moved by splint inflation was estimated for each subject at both respiratory system volumes and varied between 215 and 752 ml. The chest wall increased 64 +/- 11.8% (mean +/- SD) of the increase in Vtab. Thus increases in thoracoabdominal blood volume increase Vw about twice the decrease in Vtg.  相似文献   

8.
The electromyographic activity of the diaphragm (EMGdi) and scalene muscle (EMGsc) was studied in the supine and upright positions, respectively, during hyperoxic progressive hypercapnic rebreathing (HCVR) in five healthy males. End-expiratory esophageal pressure (EEPes) was quantified on a breath-to-breath basis as a reflection of altered end-expiratory lung volume. There was no significant difference in the slopes of EMGdi, expressed as a percentage of maximum at total lung capacity vs. minute volume of ventilation (VI), between the supine and upright positions [0.79 +/- 0.05 (SE) vs. 0.92 +/- 0.17, respectively]. In contrast, the slope of the regression line relating EMGsc to VI was steeper in the upright than in the supine position (0.69 +/- 0.05 vs. 0.35 +/- 0.04, respectively; P less than 0.005). Positive EEPes at comparable VI at the ends of HCVRs were of greater magnitude upright than supine (3.27 +/- 0.68 vs. 4.35 +/- 0.60 cmH2O, respectively, P less than 0.001). We conclude that altering posture has a greater effect on scalene and expiratory muscle activity than on diaphragmatic activity during hypercapnic stimulation.  相似文献   

9.
Aminophylline and human diaphragm strength in vivo   总被引:4,自引:0,他引:4  
The transdiaphragmatic pressure (Pdi) twitch response to single shocks from supramaximal bilateral phrenic nerve stimulation was studied before and after acute intravenous infusions of aminophylline [14.9 +/- 3.1 (SD) micrograms/ml] in nine normal subjects. Stimulation was performed with subjects in the sitting position against an occluded airway from end expiration. Baseline gastric pressure and abdominal and rib cage configuration were kept constant. There was no significant difference in peak twitch Pdi from the relaxed diaphragm between control (38.8 +/- 3.3 cmH2O) and aminophylline (40.2 +/- 5.2 cmH2O) experiments. Other twitch characteristics including contraction time, half-relaxation time, and maximum relaxation rate were also unchanged. The Pdi-twitch amplitude at different levels of voluntary Pdi was measured with the twitch occlusion technique, and this relationship was found to be similar under control conditions and after aminophylline. With this technique, maximum Pdi (Pdimax) was calculated as the Pdi at which stimulation would result in no Pdi twitch because all motor units are already maximally activated. No significant change was found in mean calculated Pdimax between control (146.9 +/- 27.0 cmH2O) and aminophylline (149.2 +/- 26.0 cmH2O) experiments. We conclude from this study that the acute administration of aminophylline at therapeutic concentrations does not significantly affect contractility or maximum strength of the normal human diaphragm in vivo.  相似文献   

10.
The measurement of pulmonary mechanics has been developed extensively for adults, and these techniques have been applied directly to neonates and infants. However, the compliant chest wall of the infant frequently predisposes to chest wall distortion, especially when there is a low dynamic lung compliance (CL,dyn). We describe a technique of directly measuring the static chest wall compliance (Cw,st), developed initially in the newborn lamb and subsequently applied to the premature neonate with chest wall distortion. The mean CL,dyn in seven intubated newborn lambs in normoxia was 2.45 +/- 0.41 ml.cmH2O-1.kg-1, whereas Cw,st was 11.81 +/- 0.25 ml.cmH2O-1.kg-1. These values did not change significantly in seven animals breathing through a tight-fitting face mask or with hypercapnia-induced tachypnea. For the eight premature infants the mean CL,dyn was 1.35 +/- 0.36 ml.cmH2O-1.kg-1, whereas the mean Cw,st was 3.16 +/- 1.01 ml.cmH2O-1.kg-1. This study shows that, under relaxed conditions when measurements of static compliance are performed, the chest wall is more compliant than the lung. The measurement of Cw,st may thus be used to determine the contribution of the respiratory musculature in stabilizing the chest wall.  相似文献   

11.
The effect of non-rapid-eye-movement (NREM) sleep on total pulmonary resistance (RL) and respiratory muscle function was determined in four snorers and four nonsnorers. RL at peak flow increased progressively from wakefulness through the stages of NREM sleep in all snorers (3.7 +/- 0.4 vs. 13.0 +/- 4.0 cmH2O X 0.1(-1) X s) and nonsnorers (4.8 +/- 0.4 vs. 7.5 +/- 1.1 cmH2O X 1(-1) X s). Snorers developed inspiratory flow limitation and progressive increase in RL within a breath. The increased RL placed an increased resistive load on the inspiratory muscles, increasing the pressure-time product for the diaphragm between wakefulness and NREM sleep. Tidal volume and minute ventilation decreased in all subjects. The three snorers who showed the greatest increase in within-breath RL demonstrated an increase in the contribution of the lateral rib cage to tidal volume, a contraction of the abdominal muscles during a substantial part of expiration, and an abrupt relaxation of abdominal muscles at the onset of inspiration. We concluded that the magnitude of increase in RL leads to dynamic compression of the upper airway during inspiration, marked distortion of the rib cage, recruitment of the intercostal muscles, and an increased contribution of expiratory muscles to inspiration. This increased RL acts as an internal resistive load that probably contributes to hypoventilation and CO2 retention in NREM sleep.  相似文献   

12.
In awake supine normal subjects, dimensional changes of the oropharyngeal airway were measured during exposure to negative intraluminal pressures. The pressure was generated 1) "actively" by subjects inspiring against an externally occluded airway or 2) "passively" by external suction at the mouth during voluntary glottic closure with no inspiratory effort. Airway dimensions were imaged with X-ray fluoroscopy and anteroposterior diameters measured at levels corresponding to cervical vertebra 3 and 4 (C3 and C4). Cephalad axial displacement of the hyoid bone (CDHY) was also measured. During the "active" maneuver, airway diameters and position were maintained at resting levels despite airway pressure up to -15 cmH2O. In contrast, during the passive maneuver at -15 cmH2O, C3 was only 15 +/- 9% and C4 only 47 +/- 8% of control; CDHY was 5.6 +/- 1.8 mm. In three subjects airway wall apposition occurred and persisted until an active inspiratory effort. We conclude that, in the absence of inspiratory effort, negative oropharyngeal airway pressures result in marked narrowing and cephalad displacement of the upper airway, even during wakefulness. Therefore, our data suggest that the complex interaction of upper airway and thoracic muscle activity is critical in determining the effective compliance and patency of the upper airway, which is readily collapsible even in normal subjects.  相似文献   

13.
Air hunger is an unpleasant urge to breathe and a distressing respiratory symptom of cardiopulmonary patients. An increase in tidal volume relieves air hunger, possibly by increasing pulmonary stretch receptor cycle amplitude. The purpose of this study was to determine whether increasing end-expiratory volume (EEV) also relieves air hunger. Six healthy volunteers (3 women, 31 +/- 4 yr old) were mechanically ventilated via a mouthpiece (12 breaths/min, constant end-tidal Pco(2)) at high minute ventilation (Ve; 12 +/- 2 l/min, control) and low Ve (6 +/- 1 l/min, air hunger). EEV was raised to approximately 150, 400, 725, and 1,000 ml by increasing positive end-expiratory pressure (PEEP) to 2, 4, 6, and 8 cmH(2)O, respectively, for 1 min during high and low Ve. The protocol was repeated with the subjects in the seated and supine positions to test for the effect of shifting baseline EEV. Air hunger intensity was rated at the end of each breath on a visual analog scale. The increase in EEV was the same in the seated and supine positions; however, air hunger was reduced to a greater extent in the seated position (13, 30, 31, and 44% seated vs. 3, 9, 23, and 27% supine at 2, 4, 6, and 8 cmH(2)O PEEP, respectively, P < 0.05). Removing PEEP produced a slight increase in air hunger that was greater than pre-PEEP levels (P < 0.05). Air hunger is relieved by increases in EEV and tidal volume (presumably via an increase in mean pulmonary stretch receptor activity and cycle amplitude, respectively).  相似文献   

14.
It is established that during tidal breathing the rib cage expands more than the abdomen in the upright posture, whereas the reverse is usually true in the supine posture. To explore the reasons for this, we studied nine normal subjects in the supine, standing, and sitting postures, measuring thoracoabdominal movement with magnetometers and respiratory muscle activity via integrated electromyograms. In eight of the subjects, gastric and esophageal pressures and diaphragmatic electromyograms via esophageal electrodes were also measured. In the upright postures, there was generally more phasic and tonic activity in the scalene, sternocleidomastoid, and parasternal intercostal muscles. The diaphragm showed more phasic (but not more tonic) activity in the upright postures, and the abdominal oblique muscle showed more tonic (but not phasic) activity in the standing posture. Relative to the esophageal pressure change with inspiration, the inspiratory gastric pressure change was greater in the upright than in the supine posture. We conclude that the increased rib cage motion characteristic of the upright posture owes to a combination of increased activation of rib cage inspiratory muscles plus greater activation of the diaphragm that, together with a stiffened abdomen, acts to move the rib cage more effectively.  相似文献   

15.
Effect of abdominal compression on maximum transdiaphragmatic pressure   总被引:1,自引:0,他引:1  
Transdiaphragmatic pressure (Pdi) is lower during maximum inspiratory effort with the diaphragm alone than when maximum inspiratory and expulsive efforts are combined. The increase in Pdi with expulsive effort has been attributed to increased neural activation of the diaphragm. Alternatively, the increase could be due to stretching of the contracted diaphragm. If this were so, Pdi measured during a combined maximum effort would overestimate the capacity of the diaphragm to generate inspiratory force. This study determined the likely contribution of stretching of the contracted diaphragm to estimates of maximum Pdi (Pdimax) obtained during combined inspiratory and expulsive effort. Three healthy trained subjects were studied standing. Diaphragmatic Mueller maneuvers were performed at functional residual capacity and sustained during subsequent abdominal compression by either abdominal muscle expulsive effort or externally applied pressure. Measurements were made of changes in abdominal (Pab) and pleural (Ppl) pressure, Pdi, rib cage and abdominal dimensions and respiratory electromyograms. Three reproducible performances of each maneuver from each subject were analyzed. When expulsive effort was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 86 +/- 12 to 148 +/- 14 (SD) cmH2O within the 1st s and was 128 +/- 14 cmH2O 2 s later. When external compression was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 87 +/- 16 to 171 +/- 19 cmH2O within the 1st s and was 152 +/- 16 cmH2O 2 s later.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We measured total chest wall impedance (Zw), "pathway impedances" of the rib cage (Zrcpath), and diaphragm-abdomen (Zd-apath), and impedance of the belly wall including abdominal contents (Zbw+) in five subjects during sustained expiratory (change in average pleural pressure [Ppl] from relaxation = 10 and 20 cmH2O) and inspiratory (change in Ppl = -10 and -20 cmH2O) muscle contraction, using forced oscillatory techniques (0.5-4 Hz) we have previously reported for relaxation (J. Appl. Physiol. 66: 350-359, 1989). Chest wall configuration and mean lung volume were kept constant. Zw, Zrcpath, Zd-apath, and Zbw+ all increased greatly at each frequency during expiratory muscle contraction; increases were proportional to effort. Zw, Zrcpath, and Zd-apath increased greatly during inspiratory muscle contraction, but Zbw+ did not. Resistances and elastances calculated from each of the impedances showed the same changes during muscle contraction as the corresponding impedances. Each of the resistances decreased as frequency increased, independent of effort; elastances generally increased with frequency. These frequency dependencies were similar to those measured in relaxed or tetanized isolated muscle during sinusoidal stretching (P.M. Rack, J. Physiol. Lond. 183: 1-14, 1966). We conclude that during respiratory muscle contraction 1) chest wall impedance increases, 2) changes in regional chest wall impedances can be somewhat independent, depending on which muscles contract, and 3) increases in chest wall impedance are due, at least in part, to changes in the passive properties of the muscles themselves.  相似文献   

17.
To explore the determinants of possible collapse of the nasal valve region, a common cause of nasal obstruction, we evaluated the mechanical properties of the nasal wall. In this study, we determined the nasal cross-sectional area-to-negative pressure ratio (nasal wall compliance) in the anterior part of the nose in six healthy subjects by measuring nasal area by acoustic rhinometry at pressures ranging from atmospheric pressure to a negative pressure of -10 cmH(2)O. Measurements were performed at baseline and after nasal mucosal decongestion (oxymetazoline). At baseline, nasal wall compliance increased progressively from the nasal valve (0.031 +/- 0.016 cm2/cmH(2)O, mean +/- SD) to the anterior and medial part of the inferior turbinate (0.045 +/- 0.024 cm2/cmH(2)O) and to the middle meatus region (0.056 +/- 0.029 cm2/cmH(2)O). After decongestant, compliances decreased and became similar in the three regions. On the basis of these results, we hypothesize that compliance of the nasal wall is partly related to mucosal blood volume and quantity of vascular tissue, which differ in the three regions, increasing from the nasal valve to the middle meatus.  相似文献   

18.
In 15 anesthetized apneic, oxygenated rabbits we simultaneously measured pleural liquid and interstitial extrapleural parietal pressures by using catheters and/or cannulas and micropipettes connected to a servonull system. With the animal in lateral posture, at an average recording height of 4.4 +/- 0.9 (SD) cm from the most dependent part of the cavity, the extrapleural catheter and the pleural cannula yielded -2.5 +/- 0.6 and -5.5 +/- 0.2 cmH2O; the corresponding values for micropipette readings in the two compartments were -2.4 +/- 0.6 and -5.4 +/- 0.4 cmH2O, respectively (not significantly different from those measured with catheters and cannulas). In the supine animal, interstitial extrapleural catheter pressure data obtained at recording heights ranging from 15 to 80% of pleural cavity lay on the identity line when plotted vs. the micropipette pressure values simultaneously gathered from the same tissues. We conclude that 1) micropipettes and catheters-cannulas yield similar results when recording from the same compartment and 2) the hydraulic pressure in the parietal extrapleural interstitium is less negative than that in the pleural space.  相似文献   

19.
We hypothesized that the response of the genioglossus to negative pressure during wakefulness should be intact in obstructive sleep apnea (OSA) patients despite published evidence showing impairment of the response of palatal muscles (Mortimore IL and Douglas NJ. Am J Respir Crit Care Med 156: 867-873, 1997). Thus the response of the genioglossus to brief nasal negative pressure applications (NPAs) in early inspiration was compared between OSA patients and an age-matched group of normal subjects at two study sites (n = 11 per group in Long Beach, n = 14 per group in Boston). Subjects were studied in the sitting (Long Beach) or supine (Boston) posture, and the genioglossus electromyogram (EMGgg) was measured with an intraoral surface electrode (Long Beach) or intramuscular electrode (Boston). The response of the EMGgg was expressed as the percent change from baseline where the baseline EMGgg was the value at the onset of the NPA. In Long Beach, the EMGgg response was significantly higher in the OSA patients at a lower suction pressure of approximately 10 cmH(2)O (75.2 +/- 8.4 vs. 37.4 +/- 4.0% increase; P < 0.001) but not at a higher suction pressure of approximately 20 cmH(2)O. In Boston, the response in the OSA patients was also greater (107.2 +/- 25.9 vs. 46.3 +/- 8.3%; P < 0.05) at a suction pressure of approximately 13 cmH(2)O. We conclude that the response of the genioglossus to NPA during wakefulness is not impaired in OSA patients compared with normal subjects and is greater at low suction pressures.  相似文献   

20.
Neonatal calves develop airflow limitation due to chronic hypobaric hypoxia   总被引:1,自引:0,他引:1  
Neonates and infants presenting with pulmonary hypertension and chronic hypoxia often exhibit airway obstruction. To investigate this association, we utilized a system in which neonatal calves are exposed to chronic hypobaric hypoxia and develop severe pulmonary hypertension. For the present study, one of each pair of six age-matched pairs of neonatal calves was continuously exposed to hypobaric hypoxia at 4,500 m (CH); the other remained at 1,500 m. At 2 wk of age, mean pulmonary arterial pressure (MPAP), dynamic lung compliance (Cdyn), resistance (RL), and static respiratory system compliance (Crs) were measured at 4,500 m in both CH and control calves exposed acutely to hypoxia (C). These measurements were repeated after cumulative administrations of nebulized methacholine (MCh). Tissues were removed for histological examination and assessment of bronchial ring contractility to MCh and KCl. After 2 wk of hypobaric hypoxia, MPAP (C 35 +/- 1.7 vs. CH 120 +/- 7 mmHg, P less than 0.001) and RL (C 2.64 +/- 0.16 vs CH 4.99 +/- 0.47 cmH2O.l-1s, P less than 0.001) increased. Cdyn (C 0.100 +/- 0.01 vs. CH 0.082 +/- 0.007 l/cmH2O) and Crs (CH 0.46 +/- 0.003 vs. C 0.59 +/- 0.009 l/cmH2O) were not significantly different. Compared with airways of C calves, airways of CH animals did not exhibit in vivo or in vitro MCh hyperresponsiveness; however, in vitro contractility to KCl of airways from CH animals was significantly increased. Histologically, airways from the CH calves showed increases in airway fibrous tissue and smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号