首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our hypothesis was tested in respect to dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the DA synthetic pathway. According to the hypothesis, L-dihydroxyphenylalanine (L-DOPA) synthesised in tyrosine hydroxylase(TH)-expressing neurons for conversion to dopamine. The mediobasal hypothalamus of rats on the 21st embryonic day was used as an experimental model. The fetal substantia nigra containing dopaminergic neurons served as control. Dopamine and L-DOPA were measured by high performance liquid chromatography in cell extracts and incubation medium in presence or absence of L-tyrosine. L-tyrosine administration increased L-DOPA synthesis in the mediobasal hypothalamus and substantia nigra. Moreover, L-tyrosine provoked an increase of dopamine synthesis in substantia nigra and a decrease in the mediobasal hypothalamus. This is, probably, due to an L-tyrosine-induced competitive inhibition of the L-DOPA transport to monoenzymatic AADC neurons after its release from the monoenzymatic TH neurons. This study provides a convincing evidence of dopamine synthesis by non-dopaminergic neurons expressing TH or AADC, in cooperation.  相似文献   

2.
Many neurotransmitter systems appear to be altered with aging. The effects of aging on the regulation of tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of catecholamines in the brain has been examined. The endogenous basal activity of tyrosine hydroxylase was lower in the hypothalamus of 24 month old Fisher 344 rats than in the hypothalamus of 3 month old or 6 month old animals. There was no difference in the basal activity of tyrosine hydroxylase in the locus ceruleus, frontal cortex, hippocampus, substantia nigra, or the striatum of rats of ages 3 months, 6 months and 24 months. Tyrosine hydroxylase activity was increased in the striatum of 3 month old (60%) and 6 month old (28%) rats after treatment with haloperidol or reserpine, whereas no change in enzyme activity followed administration of these drugs to 24 month old animals. In conclusion, increases in tyrosine hydroxylase activity in the brain that normally occur in the striatum of 3 month old rats after haloperidol or reserpine treatment are significantly decreased in 6 month old rats and not apparent in 24 month old rats.  相似文献   

3.
Vriend J  Dreger L 《Life sciences》2006,78(15):1707-1712
Haloperidol, an antipsychotic drug, was tested for its effects on the in situ activity of nigrostriatal and hypothalamic tyrosine hydroxylase, in control male Syrian hamsters and in those receiving a high daily dose of melatonin. After receiving daily ip injections (1.25 mg/kg ip) of haloperidol for 21 days, the animals were sacrificed and brain tissue collected for analysis of dopamine and metabolites by HPLC with electrochemical detection. In situ activity of tyrosine hydroyxlase (TH) activity was determined by measuring the accumulation of L-Dopa after administration of the L amino acid decarboxylase inhibitor, mhydroxybenzylhydrazine. Tissue content of dopamine and its metabolites, DOPAC and HVA, was depressed in striatum of animals receiving haloperidol, and tyrosine hydroxylase (TH) activity was significantly decreased 20-24 h after the last injection (from 1823 +/- 63 to 1139 +/- 85 pg l-dopa/mg tissue). The decrease in TH activity in striatum was significantly inhibited by daily injections of a high dose of melatonin (2.5 mg/kg ip) (from 1139 +/- 85 to 1560 +/- 116 pg L-dopa/mg tissue). In the substantia nigra and in the hypothalamus, on the other hand, haloperidol significantly increased the activity of tyrosine hydroxylase. Melatonin administration did not significantly influence TH activity in the substantia nigra, but inhibited TH activity in the hypothalamus and in the pontine brainstem. One explanation for these data is that chronic haloperidol administration in Syrian hamsters increases TH activity in hypothalamus and substantia nigra, but decreases TH activity in striatum by a mechanism involving D2 presynaptic receptors and a melatonin sensitive kinase which regulates TH phosphorylation.  相似文献   

4.
The activities of tyrosine hydroxylase and tryptophan hydroxylase, and the concentrations of the biopterin cofactor and the precursor neopterin were measured in 14 regions of postmortem brains from four histologically verified patients of senile dementia of the Alzheimer type (SDAT) and eight histologically normal controls. Neopterin concentrations were measured in the human brain for the first time. The activities of tyrosine hydroxylase and tryptophan hydroxylase in the brains of patients with SDAT were significantly reduced in the substantia nigra and in the lateral segment of the globus pallidus, locus ceruleus, and substantia nigra, respectively. The concentrations of total biopterin in the brains of patients with SDAT were significantly reduced in the putamen and substantia nigra, but the total neopterin concentrations did not change significantly. These results suggest that the reduction in biogenic amines in SDAT might be related to reductions in biosynthetic enzymes associated with biogenic amines, due to destruction of monoaminergic neurons.  相似文献   

5.

Background

The etiology of Parkinson disease (PD) has yet to be fully elucidated. We examined the consequences of injections of 3,4-dihydroxyphenylacetaldehyde (DOPAL), a toxic metabolite of dopamine, into the substantia nigra of rats on motor behavior and neuronal survival.

Methods/Principal Findings

A total of 800 nl/rat of DOPAL (1 µg/200 nl) was injected stereotaxically into the substantia nigra over three sites while control animals received similar injections of phosphate buffered saline. Rotational behavior of these rats was analyzed, optical density of striatal tyrosine hydroxylase was calculated, and unbiased stereological counts of the substantia nigra were made. The rats showed significant rotational asymmetry ipsilateral to the lesion, supporting disruption of dopaminergic nigrostriatal projections. Such disruption was verified since the density of striatal tyrosine hydroxylase decreased significantly (p<0.001) on the side ipsilateral to the DOPAL injections when compared to the non-injected side. Stereological counts of neurons stained for Nissl in pars compacta of the substantia nigra significantly decreased (p<0.001) from control values, while counts of those in pars reticulata were unchanged after DOPAL injections. Counts of neurons immunostained for tyrosine hydroxylase also showed a significant (p = 0.032) loss of dopaminergic neurons. In spite of significant loss of dopaminergic neurons, DOPAL injections did not induce significant glial reaction in the substantia nigra.

Conclusions

The present study provides the first in vivo quantification of substantia nigra pars compacta neuronal loss after injection of the endogenous toxin DOPAL. The results demonstrate that injections of DOPAL selectively kills SN DA neurons, suggests loss of striatal DA terminals, spares non-dopaminergic neurons of the pars reticulata, and triggers a behavioral phenotype (rotational asymmetry) consistent with other PD animal models. This study supports the “catecholaldehyde hypothesis” as an important link for the etiology of sporadic PD.  相似文献   

6.
Could a loss of α‐synuclein function put dopaminergic neurons at risk?   总被引:2,自引:0,他引:2  
The alpha-synuclein gene is implicated in Parkinson's disease, the symptoms of which occur after a marked loss of substantia nigra dopamine neurons. While the function of alpha-synuclein is not entirely elucidated, one function appears to be as a normal regulatory protein that can bind to and inhibit tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Soluble alpha-synuclein levels may be diminished in Parkinson's disease substantia nigra dopamine neurons both by reduced expression and by alpha-synuclein aggregation as Lewy bodies and Lewy neurites form. The loss of functional alpha-synuclein may then result in dysregulation of tyrosine hydroxylase, dopamine transport and dopamine storage, resulting in excess cytosolic dopamine. Because dopamine and its metabolites are reactive molecules capable of generating highly reactive quinones and reactive oxygen species, a failure to package dopamine into vesicles could cause irreversible damage to cellular macromolecules and contribute to resultant neurotoxicity. This review focuses on how a loss of normal alpha-synuclein function may contribute to the dopamine-related loss of substantia nigra neurons during Parkinson's disease pathogenesis.  相似文献   

7.
目的观察蛋白酶体抑制剂Lactacystin诱导大鼠黑质胶质细胞的变化、炎性介质NF-κB的表达。方法采用立体定向术将蛋白酶体抑制剂Lactacystin 10μg注射至大鼠黑质部位,免疫组织化学法观察黑质区多巴胺(DA)能神经元、小胶质细胞、星形胶质细胞的变化,炎性介质核转录因子κB(NF-κB)的表达。结果注射Lactacystin 3周,阿朴吗啡腹腔注射后出现典型旋转行为;8周后实验组大鼠损毁侧黑质酪氨酸羟化酶(TH)阳性细胞数明显减少,黑质小胶质细胞及星形胶质细胞的数量均增加,NF-κB表达增强。结论蛋白酶体抑制剂Lactacystin能激活大鼠黑质小胶质细胞及星形胶质细胞,诱导炎性介质表达。  相似文献   

8.
Following electric stimulation of the substantia nigra for 1 h there was a substantial increase in dopamine (DA) turnover in the rat caudate nucleus evidenced by an increase in its acid metabolite homovanillic acid (HVA). Concurrently there was an increase in striatal m-tyramine (mTA) and a substantial decrease in p-tyramine (pTA). Lesioning the substantia nigra to decrease impulse flow resulted in a buildup of striatal DA and mTA, but again a decrease in pTA. Following pretreatment with a tyrosine hydroxylase inhibitor, the effects of stimulation of the nigra on mTA were reversed, there being a significant decrease in this amine. The decrease of pTA in response was partially prevented by tyrosine hydroxylase inhibition. The effects of stimulation or substantia nigra lesions on pTA levels were reversed, however, by tyrosine hydroxylase inhibition, a significant increase in this amine being recorded. mTA and DA levels were largely unaffected by a combination of lesion and tyrosine hydroxylase inhibition. The results provide insight into the possible biosynthetic interrelationships between DA and the tyramine isomers in the rat caudate nucleus.  相似文献   

9.
1. The studies described herein were designed to test the hypothesis that a neuroleptic, haloperidol, may alter the level of expression of the tyrosine hydroxylase and cholecystokinin genes in discrete brain regions. 2. In situ hybridization was employed to quantitate changes in concentration of mRNA for tyrosine hydroxylase and cholecystokinin in the ventral tegmental area, substantia nigra, and locus ceruleus after acute or chronic treatment with haloperidol or vehicle. 3. Haloperidol had no effect on the level of tyrosine hydroxylase or cholecystokinin mRNAs, in the ventral tegmentum, substantia nigra, or locus ceruleus, at either 3 or 19 days of drug administration. 4. These data suggest that haloperidol administration does not alter the level of tyrosine hydroxylase or cholecystokinin mRNAs in midbrain dopamine neurons of the rat.  相似文献   

10.
Explants of substantia nigra and corpus striatum obtained from newborn rats were maintained in tissue culture for up to six days. Explants of substantia nigra exhibited a net increase in the ability to take up H3-dopamine, a process associated with the dopaminergic neurons; in contrast, the explants of corpus striatum showed a rapid loss in this ability to accumulate H3-dopamine. After three days in culture, the specific activity of tyrosine hydroxylase and monoamine oxidase had decreased 50% in explants of substantia nigra. A medium including fetal calf serum and chick embryo extracts was necessary for the increase in H3-dopamine uptake, and nerve growth factor had an inhibitory effect. Histofluorescent examination of nigral explants cultured for three days indicated morphologically normal dopaminergic neurons.  相似文献   

11.
Distribution of tyrosine hydroxylase in human and animal brain   总被引:11,自引:5,他引:6  
The activity of tyrosine hydroxylase (EC 1.10.3.1) when assayed under ideal conditions in young human brains, was comparable to that in brains of other species in level of activity and distribution. The highest levels of activity were in the putamen, caudate nucleus and substantia nigra, in keeping with data on other species. The caudate activity in human brain appeared to decrease substantially with increasing age. In both humans and baboons, the enzyme in the neostriatum was particle-bound and inhibited by the 2-amino-4-hydroxy-6,7-dimethyltetrahydropteridine cofactor system. In the substantia nigra it was soluble and stimulated by the 2-amino-4-hydroxy-6,7-dimethyltetrahydropteridine cofactor system. The data suggest that tyrosine hydroxylase may be produced in a soluble form in the cell bodies of the substantia nigra but become bound as it moves toward the nerve endings in the putamen and caudate nucleus. The bound form of the enzyme was unstable but the soluble form exhibited considerable stability.  相似文献   

12.
In Wistar rats, after 6 h of sleep deprivation and subsequent 2 h postdeprivation sleep, we found significant changes in optical density of CART peptide in neurons of nucleus accumbens and hypothalamic nucleus arcuatus as well as in processes coming into substantia nigra from nucleus accumbens. The obtained data revealed unidirectional changes of optical density of CART and tyrosine hydroxylase in the studied structures: a decrease after sleep deprivation (p < 0.05) and, on the contrary, an increase after postdeprivation sleep (p < 0.05). Confocal laser microscopy showed morphological connections of CART and dopaminergic neurons and possible colocalization of these both substances in the same neuron at the postdeprivation sleep. In experiments in vitro, after 1 h of incubation of surviving brain sections from the substantia nigra area in the medium with CART peptide there was revealed a rise of optical density of tyrosine hydroxylase in the substantia nigra pars compacta by 55% (p < 0.05). The obtained data indicate an activating effect of CART peptide on brain dopaminergic neurons and its role as a modulator of their functional activity.  相似文献   

13.
Unilateral injection of 2 μg kainic acid into the substantia nigra of the rat results in a 45% decrease in tyrosine hydroxylase activity in the injected substantia nigra and in the ipsilateral corpus striatum. In contrast, the GABAergic nerve terminals in the substantia nigra are unaffected by this treatment. Injection of kainic acid into the striatum results in a 60% decrement in the activity of glutamate decarboxylase and of endogenous GABA levels in the ipsilateral substantia nigra whereas tyrosine hydroxylase activity remains unchanged; in addition, dopamine-sensitive adenylate cyclase activity in the ipsilateral substantia nigra decreases by 74%. These findings further support the hypothesis that intracerebral injections of kainic acid cause degeneration of neurons with cell bodies near the injection site while sparing axons passing through or terminating in the region.  相似文献   

14.
Based on sleep deprivation-produced changes of electrographic parameters of the wakefulness--sleep cycle (WSC) in rats and common frogs, dynamics of activity of tyrosine hydroxylase, the key enzyme of dopamine synthesis, was studied immunohistochemically in substantia nigra and nigrostriatal pathway in rats and in striatum, paraventricular organ, and extrahypothalamic pathways in frogs. There are revealed changes in dynamics of tyrosine hydroxylase in rats and in common frogs after the 6-h sleep deprivation and after 2 h of postdeprivation sleep. This allows determining the degree of participation of corticostriatal neuroregulatory and hypothalamo-pituitary neurosecretory systems and their role in regulation of WSC. Possible evolutionary peculiarities of morphofunctional differences in homoiothermal and poikilothermal animals are discussed.  相似文献   

15.
Rats were fed maximally tolerated doses of L-3,4-Dihydroxyphenylalanine (L-DOPA) and carbidopa daily for 120 days in order to achieve a sustained elevation in brain dopamine levels. Some animals were also given buthionine sulfoximine, a gamma-glutamylcysteine synthetase inhibitor, in an unsuccessful effort to reduce brain glutathione contents. L-DOPA- and carbidopa-treated animals displayed no behavioral changes suggestive of nigrostriatal dopaminergic neuronal loss. When sacrificed 60 days after L-DOPA treatment ended, all rats had normal tyrosine hydroxylase activities and dopamine contents in their striata, and cell counts were normal in the substantia nigra. It therefore seems unlikely that a model of Parkinson's disease, suitable for exploring the etiological importance of glutathione deficiency, can be produced in rats merely by administering the largest tolerable doses of L-DOPA.  相似文献   

16.
Recent studies of mouse mutant aphakia have implicated the homeobox gene Pitx3 in the survival of substantia nigra dopaminergic neurons, the degeneration of which causes Parkinson's disease. To directly investigate a role for Pitx3 in midbrain DA neuron development, we have analysed a line of Pitx3-null mice that also carry an eGFP reporter under the control of the endogenous Pitx3 promoter. We show that the lack of Pitx3 resulted in a loss of nascent substantia nigra dopaminergic neurons at the beginning of their final differentiation. Pitx3 deficiency also caused a loss of tyrosine hydroxylase (TH) expression specifically in the substantia nigra neurons. Therefore, our study provides the first direct evidence that the aphakia allele of Pitx3 is a hypomorph and that Pitx3 is required for the regulation of TH expression in midbrain dopaminergic neurons as well as the generation and/or maintenance of these cells. Furthermore, using the targeted GFP reporter as a midbrain dopaminergic lineage marker, we have identified previously unrecognised ontogenetically distinct subpopulations of dopaminergic cells within the ventral midbrain based on their temporal and topographical expression of Pitx3 and TH. Such an expression pattern may provide the molecular basis for the specific dependence of substantia nigra DA neurons on Pitx3.  相似文献   

17.
Long-Term Effects of RU24722 on Tyrosine Hydroxylase of the Rat Brain   总被引:5,自引:4,他引:1  
The effects of RU24722 (14,15-dihydro-20,21-dinoreburnamine-14-ol) on tyrosine hydroxylase in central catecholaminergic neurons were studied in rats treated with different quantities of the molecule, and a time course was done for the minimal dose that gave the maximal effect. RU24722 induced increases in tyrosine hydroxylase activities and specific protein content in noradrenergic cells of the locus ceruleus and decreased all these parameters in dopaminergic neurons of the substantia nigra and ventral tegmental area. The results pointed out that the specific activity of newly synthesized tyrosine hydroxylase in the loci cerulei was potentially greater but was not expressed "in vivo" except 7 days after injection. The phenotypic specificity and the time course pattern of the action could be considered as a consequence of an induction mechanism. The comparison of long-term change in tyrosine hydroxylase values after piperoxane, RU24722, clonidine, and combined RU24722-clonidine treatment demonstrated that an activation during a few hours did not induce tyrosine hydroxylase in central noradrenergic neurons. Clonidine antagonized the activating effect of RU24722 following its injection but did not affect its long-term induction properties.  相似文献   

18.
Perinatal immune challenge leads to neurodevelopmental dysfunction, permanent immune dysregulation and abnormal behaviour, which have been shown to have translational validity to findings in human neuropsychiatric disorders (e.g. schizophrenia, mood and anxiety disorders, autism, Parkinson’s disease and Alzheimer’s disease). The aim of this animal study was to elucidate the influence of early immune stimulation triggered by systemic postnatal lipopolysaccharide administration on biochemical, histopathological and morphological measures, which may be relevant to the neurobiology of human psychopathology. In the present study of adult male Wistar rats we examined the brain and plasma levels of monoamines (dopamine, serotonin), their metabolites, the levels of the main excitatory and inhibitory neurotransmitters glutamate and γ-aminobutyric acid and the levels of tryptophan and its metabolites from the kynurenine catabolic pathway. Further, we focused on histopathological and morphological markers related to pathogenesis of brain diseases - glial cell activation, neurodegeneration, hippocampal volume reduction and dopaminergic synthesis in the substantia nigra. Our results show that early immune stimulation in adult animals alters the levels of neurotransmitters and their metabolites, activates the kynurenine pathway of tryptophan metabolism and leads to astrogliosis, hippocampal volume reduction and a decrease of tyrosine hydroxylase immunoreactivity in the substantia nigra. These findings support the crucial pathophysiological role of early immune stimulation in the above mentioned neuropsychiatric disorders.  相似文献   

19.
Based on sleep deprivation-produced changes of electrographic parameters of the wakefulness-sleep cycle (WSC) in rats and frogs (Rana temporaria), dynamics of activity of tyrosine hydroxylase, the key enzyme of dopamine synthesis, was studied immunohistochemically in substantia nigra and nigrostriatal pathway in rats and in striatum, paraventricular organ, and extrahypothalamic pathways in frogs. Changes in dynamics of tyrosine hydroxylase in rats and in frogs are revealed after the 6-h sleep deprivation and after 2 h of postdeprivation sleep. This allows determining the degree of participation of corticostriatal neuroregulatory and hypothalamo-pituitary neurosecretory systems and their role in regulation of WSC. Possible evolutionary peculiarities of morphofunctional differences in homoiothermal and poikilothermal animals are discussed.  相似文献   

20.
The short-term influences of stress on the activities of tyrosine hydroxylase in vivo and in vitro were examined in mice. The in vivo tyrosine hydroxylase activity was estimated by the rate of dopa accumulation which was measured at 30 min after the injection of NSD-1015 (100 mg kg), an aromatic l-amino acid decarboxylase inhibitor, intraperitoneally and was compared with tyrosine hydroxylase activity measured in vitro. For the in vivo assay, both the accumulation of dopa (tyrosine hydroxylase activity) and that of 5-hydroxytryptophan (tryptophan hydroxylase activity) and the levels of monoamines and the metabolites (noradrenalin, adrenalin, dopamine, normetanephrine, 3-methoxytyramine and serotonin) and those of precursor amino acids, tyrosine and tryptophan, were investigated in ten different brain regions and in adrenals. The amount of dopa accumulation in the brain as a consequence of decarboxylase inhibition, in vivo tyrosine hydroxylase activity, was significantly increased by stress, in nerve terminals (striatum, limbic brain, hypothalamus, cerebral cortex and cerebellum) and also in adrenals. The effect of stress on tyrosine hydroxylase activity in vitro at a subsaturating concentration of 6-methyltetrahydropterin cofactor was also observed in nerve terminals (striatum, limbic brain, hypothalamus, and cerebral cortex). The amount of 5-hydroxytryptophan accumulation, the in vivo tryptophan hydroxylase activity, was also significantly increased in bulbus olfactorius, limbic brain, cerebral cortex, septum and lower brain stem. The influence of stress was also observed on the levels of precursor amino acids, tyrosine and tryptophan and monoamines in specific brain parts. These results suggest that the stress influences both catecholaminergic neurons and serotonergic neurons in nerve terminals in the brain. This effect was also observed on tyrosine hydroxylase activity in vitro in nerve terminals. However, in adrenals, the influence by stress was not observed on the in vitro activity, although dopa accumulation was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号