首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N6′, O2′-dibutyryl adenosine 3′, 5′-cyclic monophosphoric acid, but not other cyclic nucleotides stimulates [14C]ketone body production from [14C]palmitate in isolated rat liver mitochondria. Butyrate alone, as well as unlabeled acetate, octanoate and palmitate had similar effects. This redistribution of the oxidative products of [14C]palmitate can best be explained by exceeding the capacity of the Krebs cycle and/or changes in the acetyl coenzyme A/coenzyme A ratio. In contrast to [14C]palmitate, [14C]octanoate oxidation to [14C]O2 and [14C]ketone bodies was inhibited by the addition of unlabeled fatty acids. This suggests that an additional mechanism by which unlabeled fatty acids may stimulate [14C]ketone body production is by enhancing the carnitine-dependent transport of [14C]palmitate into mitochondria.  相似文献   

2.
Mass spectrometric evidence is presented confirming the identification of the adenosine nucleotide previously isolated from tissues of Phaseolus vulgaris as adenosine 3′: 5′-cyclic monophosphate.  相似文献   

3.
In an attempt to determine the mechanism of action of caffeine clastogenicity (chromosome breakage), substances directly or indirectly affecting the synthesis or integrity of DNA were added to caffeine-treated human lymphocyte cultures. At concentrations of 250–750 μg caffeine per ml, no evidence could be found which would indicate that caffeine was acting as a purine analogue, inhibitor of phosphodiesterase, stimulator of adenylosuccinate (S-AMP) lyase, labilizer of lysosomes, or as a clastogen which could be inhibited by an antimutagen.  相似文献   

4.
5.
The hydrolysis of cyclic AMP and cyclic GMP by homogenates of normal bovine parathyroid gland and human parathyroid adenomas was decreased by EGTA. When supernatants were chromatographed on DEAE-cellulose it was found that sheep brain calmodulin in the presence of calcium stimulated cyclic AMP and cyclic GMP phosphodiesterase activity. The response to calmodulin in two human parathyroid adenomas was less than that in normal bovine parathyroid. Calmodulin was detected in heat-treated supernatants of 11 parathyroid adenomas by its ability to activate calmodulin-free sheep brain phosphodiesterase. The results suggest a role for calcium in the hydrolysis of cyclic nucleotides in parathyroid tissue.  相似文献   

6.
Ca2+ accumulation at pH 6.8 by isolated rabbit heart microsomes derived chiefly from sarcoplasmic reticulum was investigated by a quench-flow technique. The reaction was terminated at preset times by addition to the reaction mixture of an equal volume of 10 to 50 mM ethyleneglycol-bis-(β-aminoethyl ether)-N,N′-tetraacetic acid buffered at pH 6.0. The initial velocity of Ca2+ accumulation by microsomal preparations exhibiting a steady state Ca2+ accumulation of 25.6 nmol Ca2+/mg increased from 3.67 to 33.4 nmol Ca2+/mg · s as the free Ca2+ concentration was raised from 0.2 to 18.9 μM. Preincubation of the cardiac microsomes with a partly purified soluble cardiac cyclic AMP-dependent protein kinase, MgATP, and cyclic AMP lead to a significant increase in the initial Ca2+ accumulation rate. The amounts of Ca2+ that were found to accumulate in the first 200 ms of the reaction are comparable to the quantities of the ion that according to literature data need to be removed from the myofilaments and the myoplasm for induction of relaxation of the myocardial fibers.  相似文献   

7.
Mass spectral analyses of the CO2 liberated in the Cypridina luciferin-luciferase and firefly luciferin-luciferase reactions run in the presence of 17O2 and H218O show that the product is predominantly C18O16O (mass 46) and not C17O16O (mass 45). Incorporation of 18O into medium CO2 by exchange does not account for the observed results. These experiments provide evidence that the Cypridina and firefly bioluminescence reactions proceed via a linear peroxide mechanism rather than the dioxetane mechanism and suggest that a common mechanism may underly many bioluminescence reactions.  相似文献   

8.
A procedure is described which unequivocally demonstrates the presence of adenosine 3′:5′-cyclic monophosphate in Phaseolus vulgaris. Its concentration was determined spectrophotometrically at 2·6–9·2 nmol g?1 of tissue (dry wt) for 6-day-old seedlings and about one-tenth of this in 13-day-old plants.  相似文献   

9.
10.
Guanosine 3′: 5′-cyclic monophosphate (cGMP) isolated from barley seeds and seedlings was purified using neutral alumina and anion-exchange column chromatography, then descending paper chromatography, and finally estimated by means of radioimmunoassay. The putative compound was identified on cellulose chromatography in three solvent systems.During the early phase of the germination, the cGMP content decreased steadily from 30 fmol/g of dry seeds to undetectable amounts in seeds after 18 h of germination. The process of seedling growth was associated with the increase of cGMP concentration. Nine-day-old seedlings contained 147 and 200 fmol/g of fresh weight in the roots and in the coleoptiles plus leaves, respectively.  相似文献   

11.
12.
One of the labeled compounds synthesized by Chlamydomonas reinhardtii when 32Pi was supplied was isolated from both the cells and the medium in which the cells had grown. This compound copurified with authentic [8-3H]cAMP by TLC to a constant ratio of 32P/3H. The compound was degraded by beef heart cyclic nucleotide phosphodiesterase to a product which cochromatographed with authentic 5′AMP, at the same rate as the hydrolysis of authentic cAMP-[3H] to 5′AMP-[3H]. In both cases, 1-Me-3-isoBu-xanthine, a specific inhibitor of the phosphodiesterase, totally blocked the reaction. It is concluded that the compound synthesized by C. reinhardtii was cAMP, 85% of which was released into the medium.  相似文献   

13.
14.
Intact adipocytes exhibit ectoprotein kinase activity as reflected by their ability to catalyze the transfer of the terminal phosphate of (γ-32P) ATP to histone added to a cell suspension. This activity is substrate, time and cell number dependent. Lineweaver-Burk plots gave Km and Vmax values for ATP of 5 × 10?5 M and 7.14 pmoles/min/1.5 × 105 cells. Cyclic AMP but not cyclic GMP in μM concentrations stimulates ectoprotein kinase activity. The controlled tryptic digestion of intact cells results in reduction of ectoprotein kinase activity. This activity is not due to leakage of intracellular protein kinases during the preparative procedure nor to penetration of histone into the cells. Additional phosphoproteins not accessible to endogenous protein kinase activity are also localized on the external surface of the intact fat cell.  相似文献   

15.
16.
17.
18.
The accumulation of 45Ca2+ by intact mouse mastocytoma cells was examined before and after treatment of the cells with N6,O2′-dibutyryladenosine 3′,5′, cyclic monophosphate and theophylline to inhibit growth. In the presence of phosphate either glycolysis, respiration or ATP supported 45Ca2+ uptake by the cells and in each case the accumulated 45Ca2+ appeared to be retained by mitochondria. Inhibition of growth by drug treatment for 20h increased subsequent 45Ca2+ accumulation when cells were incubated with 45CaCl2, succinate and phosphate. Since prior drug treatment did not increase 45Ca2+ accumulation with glucose, ATP or malate the drugs appeared to increase 45Ca2+ accumulation by affecting succinate metabolism.  相似文献   

19.
20.
Aggregation in Dictyostelium discoideum was shown in previous studies employing EGTA to require Ca2+, but the intra- or extracellular site of action of this ion and its role in chemotaxis were not determined [1]. In this investigation we show that the intracellular Ca2+ immobilising agent TMB-8 does not affect binding of the signalling nucleotide, cAMP, to the cell surface receptors but abolishes the rapid accumulation of intracellular cGMP and subsequent chemotactic aggregation. We infer that movement of Ca2+ from membrane-bound stores is triggered by binding of cAMP to the cell-surface receptor and that this plays a primary role in stimulating cGMP formation and chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号