首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several mechanisms that utilize farnesyl pyrophosphate and nerolidyl pyrophosphate as condensing substrates have been postulated for the asymmetric condensation reaction in squalene biosynthesis. Although there is ample evidence that farnesyl pyrophosphate is a substrate for this reaction, there has been no information concerning the role of nerolidyl pyrophosphate. We have made the following observations that demonstrate that nerolidyl pyrophosphate cannot be a free intermediate in squalene biosynthesis. (a) There is no significant interconversion of farnesyl pyrophosphate and nerolidyl pyrophosphate in a squalene-synthesizing system from yeast. (b) Nerolidyl-1-(3)H(2) pyrophosphate is not converted to squalene in the presence or absence of farnesyl pyrophosphate. (c) The addition of unlabeled nerolidyl pyrophosphate to incubation mixtures does not alter the relative loss of alpha-hydrogens from farnesyl pyrophosphate during its conversion to squalene. The synthesis of nerolidyl-1-(3)H(2) pyrophosphate is described. Chromatographic methods for the separation of pyrophosphate esters of triprenols and terpenols are included.  相似文献   

2.
Homogenates and subcellular fractions of the intimamedia of hog aorta have been prepared and examined for the presence of the enzymes catalyzing the conversion of acetyl CoA to squalene. Enzyme activities effecting the conversion of acetyl CoA to 3-hydroxy-3-methylglutarate (HMG); HMG CoA to mevalonic acid; mevalonic acid to 5-phosphomevalonic acid, 5-pyrophosphomevalonic acid, and isopentenyl pyrophosphate; isopentenyl pyrophosphate to farnesyl pyrophosphate; and farnesyl pyrophosphate to squalene have been demonstrated in these homogenates. The overall conversion of mevalonate to squalene has also been demonstrated with recombined fractions of hog aorta homogenates. Data are also presented that suggest that phosphatases present in the crude homogenates act to cleave farnesyl pyrophosphate to farnesol, and phospho- and pyrophosphomevalonate to mevalonate.  相似文献   

3.
Summary In the first part of the review the background to the discovery of the asymmetric synthesis of squalene from two molecules of farnesyl pyrophosphate and NADPH is described, then the stereochemistry of the overall reaction is summarized. The complexity of the biosynthesis of squalene by microsomal squalene synthetase demanded the existence of some intermediate(s) between farnesyl pyrophosphate and squalene. This demand was satisfied by the discovery of presqualene pyrophosphate, an optically active C30 substituted cyclopropylcarbinyl pyrophosphate, the absolute configuration of which at all three asymmetric centers of the cyclopropane ring was deduced to be R. Possible mechanisms for the biosynthesis of presqualene pyrophosphate and its reductive transformation into squalene are presented.In the second part of the review the nature of the enzyme is discussed. The question whether presqualene pyrophosphate is an obligate intermediate in the biosynthesis of squalene is examined, with the firm conclusion that it is. It is as yet uncertain whether the two half reactions of squalene synthesis, i.e. (i) 2 × farnesyl pyrophosphate presqualene pyrophosphate; (ii) presqualene pyrophosphate + NADPH (NADH) squalene, are catalyzed by one or two enzymes or by a large complex with two catalytic sites. Evidence is cited for the existence on the enzyme of two distinct binding sites with different affinities for the two farnesyl pyrophosphate molecules. The types of enzyme preparations available at present are described and types of experiments carried out with these are critically examined. The implications of the properties of a low molecular weight squalene synthetase solubilized with deoxycholate from microsomal membranes is discussed and a model for the enzyme in an organized membrane structure is presented.  相似文献   

4.
Six 1-3H-labeled analogues of farnesyl pyrophosphate have been studied as potential substrates for yeast and rat liver squalene synthetases: 2-methylfarnesyl pyrophosphate (4), 3-demethylfarnesyl pyrophosphate (5), 7,11-dimethyl-3-ethyl-2,6,10-dodecatrienyl pyrophosphate (6), 6,7,10,11-tetrahydrofarnesyl pyrophosphate (7), 4-methylthiofarnesyl pyrophosphate (8), and 4-fluorofarnesyl pyrophosphate (9). Analogues 4 and 5 are enzymatically incorporated into 11-methylsqualene (10) and 10-demethylsqualene (11), respectively, even if no farnesyl pyrophosphate is added to the incubations. None of the other analogues gives nonpolar products with either the yeast or liver enzymes. No tritium is enzymatically released to the medium from any of the analogues, indicating that they are not accepted at the first (proton exchanging) site. The data rule out formation of dead-end presqualene pyrophosphate products with analogues as first, but not as second, substrates. Implications of these results for the enzyme active-site topology and mechanism are discussed.  相似文献   

5.
Sites of control of hepatic cholesterol biosynthesis   总被引:9,自引:0,他引:9  
An inhibition in the conversion of mevalonate to cholesterol has been demonstrated in liver of cholesterol-fed rats by both in vitro and in vivo methods. Synthesis decreased to 30% of the control value after 1 week and 20% after 1 month on a 1% cholesterol diet. After a year, synthesis from mevalonate was almost completely inhibited. The rate of conversion of squalene to cholesterol was not consistently decreased but that of farnesyl pyrophosphate to cholesterol was decreased considerably. The rate of conversion of mevalonate to farnesyl pyrophosphate by a soluble liver enzyme preparation was also decreased in cholesterol-fed animals. Sites of inhibition of cholesterol synthesis were detected before mevalonate, between mevalonate and farnesyl pyrophosphate, and after farnesyl pyrophosphate, probably at the conversion of farnesyl pyrophosphate to squalene. The inhibition of mevalonate conversion to cholesterol developed more slowly than that of acetate and appeared to be secondary to it. The maximum capacities of normal liver homogenates and slices to synthesize cholesterol from mevalonate were shown to be far greater than from acetate. Consequently, sites of inhibition after mevalonate probably do not have a significant effect on the over-all rate of cholesterol synthesis in the intact cholesterol-fed animal.  相似文献   

6.
Squalene synthetase. I. Dissociation and reassociation of enzyme complex   总被引:1,自引:0,他引:1  
Squalene synthetase, purified to near homogeneity from baker's yeast, has been resolved into two components of different molecular weight. One of these catalyzes the conversion of farnesyl pyrophosphate to squalene and the other catalyzes the first partial reaction of squalene synthesis, namely the formation of presqualene pyrophosphate. Each of these components is converted in part to the other under appropriate conditions of incubation.  相似文献   

7.
We describe a simple assay for measuring squalene epoxidase specific activity in Saccharomyces cerevisiae cell-free extracts, by using [14C] farnesyl pyrophosphate as substrate. Cofactor requirements for activity are FAD and NADPH or NADH, NADPH being the preferred reduced pyridine nucleotide. Squalene epoxidase activity is localized in microsomal fraction and no supernatant soluble factor is required for maximum activity. Microsomal fraction converted farnesyl pyrophosphate into squalene, squalene 2,3-epoxide and lanosterol, showing that squalene 2,3-epoxide-lanosterol cyclase is also a microsome-bound enzyme. We show also that squalene epoxidase activity is not inhibited by ergosterol or lanosterol, but that enzyme synthesis is induced by oxygen.  相似文献   

8.
Analogues of farnesyl pyrophosphate containing a farnesyl moiety and a variety of amine residues replacing the pyrophosphate have been synthesized. Most of these compounds were effective inhibitors of the synthesis of squalene and presqualene pyrophosphate from farnesyl pyrophosphate. 50% inhibition was obtained at concentrations between 50 and 100 micron. These analogues also inhibited other microsomal enzymes so they apparently function as general inhibitors of microsomal enzymes.  相似文献   

9.
Cell-free preparations of both Rhizoctonia solani, a sterol-synthesizing fungus, and Phytophthora cinnamomi, a non-sterol-synthesizing fungus, incubated in the presence of [2(-14)C]mevalonate and iodacetamide, converted the mevalonate into labelled mevalonate 5-phosphate, mevalonate 5-pyrophosphate and isopentenyl pyrophosphate. In the absence of iodoacetamide, but under anaerobic conditions, the same preparations converted the mevalonate into labelled geraniol, farnesol and squalene, the first two compounds presumably as their pyrophosphates. When cell-free preparations of both organisms were incubated aerobically in the presence of [1(-14)C]isopentenyl pyrophosphate, only labelled geraniol, farnesol and squalene were recovered from the P. cinnamomi reaction mixture, whereas labelled geraniol, farnesol, squalene, squalene epoxide, lanosterol and ergosterol were present in the R. solani reaction mixture. When these same preparations were incubated in the presence of 14C-labelled squalene, labelled squalene epoxide, lanosterol and ergosterol were recovered from the R. solani reaction mixture. In contrast, the P. cinnamomi preparation was unable to convert the squalene into products further along the sterol pathway; instead, a portion of the labelled squalene was converted into water-soluble products, indicating the possible existence of a squalene-degradation process in this organism. It appears that the block in the sterol biosynthetic pathway of P. cinnamomi occurs at the level of squalene epoxidation.  相似文献   

10.
《Experimental mycology》1990,14(1):74-77
To cast light on the overall biosynthetic conversion of farnesol pyrophosphate to presqualene alcohol pyrophosphate (PSA), the biochemical precursor of squalene as well as all sterols, radiolabeled bifarnesol (1) was prepared and fed toGibberella fujikuroi. The diol (1), acting as a surrogate for a previously suggested phosphorylated version of1, was converted to radiolabeled presqualene alcohol and squalene, as well as various sterols, including lanosterol and24-β-methylcholesta-5,7,9(11),22-tetraen-3β-ol, previously isolated from the same fungus. The results are interpreted to imply that a phosphorylated version of1 may act as a bone fide intermediate in the biosynthesis of PSA, thereby rendering unlikely any type of concerted farnesyl/presqualene pyrophosphate change.  相似文献   

11.
Effect of detergents on sterol synthesis in a cell-free system of yeast   总被引:1,自引:0,他引:1  
In order to obtain information about the reactivity of enzymes in sterol synthesis of yeast, the effects of some detergents were investigated. Among the detergents used, Triton X-100 was found to exert a unique action, and its effect on the incorporation of 14C-labeled acetate, mevalonate, farnesyl pyrophosphate, or S-adenosyl-L-methionine into squalene, 2,3-oxidosqualene, and sterols in a cell-free system was examined. Triton X-100 showed virtually no effect on the enzyme activities in the reactions from acetyl CoA to farnesyl pyrophosphate, but it had a marked effect on reactions from farnesyl pyrophosphate to ergosterol. Evidence was obtained suggesting that Triton X-100 apparently activated squalene synthetase (EC 2.5.1.21) but inhibited squalene epoxidase (EC 1.14.99.7) and delta 24-sterol methyltransferase (EC 2.1.1.41). The activity of epoxidase was protected from the inhibition by increasing the concentration of cell-free extracts or by the prior addition of lecithin liposomes to the reaction mixture. The inhibition of methyltransferase was partially reversed by treatment with Bio-heads SM-2, but that of epoxidase was not reversed by the treatment.  相似文献   

12.
Microsomes from rat liver have been shown to synthesize a squalene precursor from farnesyl pyrophosphate. This intermediate is identical with presqualene pyrophosphate, a 30-carbon cyclopropane containing pyrophosphate ester that had previously been isolated from yeast. The squalene precursor was found to be tightly, but not covalently, bound to microsomes.  相似文献   

13.
Abstract: The effect of squalestatin 1 (SQ) on squalene synthase and other enzymes utilizing farnesyl pyrophosphate (F-P-P) as substrate was evaluated by in vitro enzymological and in vivo metabolic labeling experiments to determine if the drug selectively inhibited cholesterol biosynthesis in brain cells. Direct in vitro enzyme studies with membrane fractions from primary cultures of embryonic rat brain (IC50 = 37 n M ), pig brain (IC50 = 21 n M ), and C6 glioma cells (IC50 = 35 n M ) demonstrated that SQ potently inhibited squalene synthase activity but had no effect on the long-chain cis -isoprenyltransferase catalyzing the conversion of F-P-P to polyprenyl pyrophosphate (Poly-P-P), the precursor of dolichyl phosphate (Dol-P). SQ also had no effect on F-P-P synthase; the conversion of [3H]F-P-P to geranylgeranyl pyrophosphate (GG-P-P) catalyzed by partially purified GG-P-P synthase from bovine brain; the enzymatic farnesylation of recombinant H-p21 ras by rat brain farnesyltransferase; or the enzymatic geranylgeranylation of recombinant Rab1A, catalyzed by rat brain geranylgeranyltransferase. Consistent with SQ selectively blocking the synthesis of squalene, when C6 glial cells were metabolically labeled with [3H]mevalonolactone, the drug inhibited the incorporation of the labeled precursor into squalene and cholesterol (IC50 = 3–5 µ M ) but either had no effect or slightly stimulated the labeling of Dol-P, ubiquinone (CoQ), and isoprenylated proteins. These results indicate that SQ blocks cholesterol biosynthesis in brain cells by selectively inhibiting squalene synthase. Thus, SQ provides a useful tool for evaluating the obligatory requirement for de novo cholesterol biosynthesis in neurobiological processes without interfering with other critical reactions involving F-P-P.  相似文献   

14.
Structure, mechanism and function of prenyltransferases.   总被引:13,自引:0,他引:13  
In this review, we summarize recent progress in studying three main classes of prenyltransferases: (a) isoprenyl pyrophosphate synthases (IPPSs), which catalyze chain elongation of allylic pyrophosphate substrates via consecutive condensation reactions with isopentenyl pyrophosphate (IPP) to generate linear polymers with defined chain lengths; (b) protein prenyltransferases, which catalyze the transfer of an isoprenyl pyrophosphate (e.g. farnesyl pyrophosphate) to a protein or a peptide; (c) prenyltransferases, which catalyze the cyclization of isoprenyl pyrophosphates. The prenyltransferase products are widely distributed in nature and serve a variety of important biological functions. The catalytic mechanism deduced from the 3D structure and other biochemical studies of these prenyltransferases as well as how the protein functions are related to their reaction mechanism and structure are discussed. In the IPPS reaction, we focus on the mechanism that controls product chain length and the reaction kinetics of IPP condensation in the cis-type and trans-type enzymes. For protein prenyltransferases, the structures of Ras farnesyltransferase and Rab geranylgeranyltransferase are used to elucidate the reaction mechanism of this group of enzymes. For the enzymes involved in cyclic terpene biosynthesis, the structures and mechanisms of squalene cyclase, 5-epi-aristolochene synthase, pentalenene synthase, and trichodiene synthase are summarized.  相似文献   

15.
The enzyme catalysing the synthesis of farnesyl pyrophosphate from dimethylallyl pyrophosphate and isopentenyl pyrophosphate, or from geranyl pyrophosphate and isopentenyl pyrophosphate, has been purified 100-fold from homogenates of pig liver. The enzyme has optimum pH 7.9 and requires Mg(2+) as activator in preference to Mn(2+); it is inhibited by iodoacetamide, N-ethylmaleimide, p-hydroxymercuribenzoate and phosphate ions in addition to the products of the reaction, inorganic pyrophosphate and farnesyl pyrophosphate. From product-inhibition studies of the geranyltransferase reaction, the order of addition of substrates to and release of products from the enzyme has been deduced: geranyl pyrophosphate combines with the enzyme first, followed by isopentenyl pyrophosphate. Farnesyl pyrophosphate dissociates from the enzyme before inorganic pyrophosphate. The existence of isopentenyl pyrophosphate isomerase in liver is confirmed. Methods for the preparation of the pyrophosphate esters of isopentenol, 3,3-dimethylallyl alcohol, geraniol and farnesol are also described.  相似文献   

16.
A protein fraction capable of catalysing the formation of all four geometrical isomers of farnesyl pyrophosphate has been isolated from cotton roots. Using neryl pyrophosphate and isopentenyl pyrophosphate as substrates the product was found to be cis-cis farnesyl pyrophosphate and possibly trans-cis farnesyl pyrophosphate. Geranyl pyrophosphate and isopentenyl pyrophosphate as substrates yielded trans-trans and possible cis-trans farnesyl pyrophosphate. During purification of the active protein fraction, the ratio of utilization of geranyl pyrophosphate and neryl pyrophosphate did not remain constant, indicating that two enzymes may be involved, one specific for cis C10-substrate and the other for trans C10-substrate.  相似文献   

17.
Current hypotheses of the biosynthesis of presqualene pyrophosphate were tested by the examination of presqualene alcohol biosynthesized from [1R,5R,9R-1,5,9-D3]farnesyl pyrophosphate and from [1-18O]farnesyl pyrophosphate. Nuclear magnetic resonance spectrometry showed that the octet of the two cyclopropylcarbinyl protons seen in the spectrum of protio-presqualene alcohol, centered at τ 6.35, was replaced by a broad doublet of one proton (τ, 6.23; J, 6.2 Hz), which became sharpened after deuterium decoupling and was reduced to a singlet after deuterium and proton decoupling. Also the doublet of a single olefinic proton adjacent to the cyclopropane ring, seen in the spectrum of protio-presqualene alcohol at τ 5.08 (J, 8.5 Hz), was reduced to a broad singlet. The presqualene alcohol biosynthesized from the [1-18O]farnesyl pyrophosphate contained the same isotopic concentration as its precursor. The observations, taken together with previous results, are interpreted to mean that the pyrophosphate-bearing group of one farnesyl pyrophosphate molecule appears without chhnge of configuration, and without previous cleavage of the CO bond of farnesyl pyrophosphate, in presqualene pyrophosphate and that the pro-R hydrogen atom at C-1 of the second farnesyl pyrophosphate molecule appears at C-3 of the cyclopropane ring anti to the vinylic substituent. The observations support the view that presqualene pyrophosphate is not an artifact, but a true intermediate in the biosynthesis of squalene.  相似文献   

18.
Squalene synthetase (farnesyldiphosphate:farnesyldiphosphate farnesyltransferase, EC 2.5.1.21) is an intrinsic microsomal protein that catalyzes the synthesis of squalene from farnesyl pyrophosphate via the intermediate presqualene pyrophosphate. We have solubilized this enzyme from yeast with a mixture of the detergents N-octyl beta-D-glucopyranoside and Lubrol PX. Approximately 50-fold purification of the solubilized activities has been achieved by chromatography on DEAE-cellulose and hydroxylapatite and by isoelectric focusing. The most highly purified preparation has one major band of protein with a molecular weight of 53,000 as estimated by electrophoresis under denaturing conditions. The enzyme may also have been modified by proteolysis during isolation since a 47,000 molecular weight species was also found. The two activities, presqualene pyrophosphate synthetase and squalene synthetase, copurified during isolation.  相似文献   

19.
When the microsomal fraction of Saccharomyces cerevisiae was incubated with farnesyl pyrophosphate or presqualene pyrophosphate in the presence of Mn2+, dehydrosqualene was formed. Incubation of the reaction mixture in the presence of NADPH gave squalene, not dehydrosqualene, as the product. Little dehydrosqualene was formed when Mn2+ was replaced with Mg2+. These observations suggest that dehydrosqualene formation is closely associated with squalene synthesis in yeast, which synthesizes neither carotenes nor related pigments.  相似文献   

20.
Casbene is a macrocyclic diterpene hydrocarbon that is produced in young castor bean (Ricinus communis L.) seedlings after they are exposed to Rhizopus stolonifer or other fungi. The activities of enzymes that participate in casbene biosynthesis were measured in cell-free extracts of 67-hour castor bean seedlings (a) that had been exposed to R. stolonifer spores 18 hours prior to the preparation of extracts, and (b) that were maintained under aseptic conditions throughout. Activity for the conversion of mevalonate to isopentenyl pyrophosphate does not change significantly after infection. On the other hand, the activities of farnesyl pyrophosphate synthetase (geranyl transferase), geranylgeranyl pyrophosphate synthetase (farnesyl transferase), and casbene synthetase are all substantially greater in infected tissues in comparison with control seedlings maintained under sterile conditions. The subcellular localization of these enzymes of casbene biosynthesis was investigated in preparations of microsomes, mitochondria, glyoxysomes, and proplastids that were resolved by centrifugation in linear and step sucrose density gradients of homogenates of castor bean endosperm tissue from both infected and sterile castor bean seedlings. Isopentenyl pyrophosphate isomerase and geranyl transferase activities are associated with proplastids from both infected and sterile seedlings. Significant levels of farnesyl transferase and casbene synthetase are found only in association with the proplastids of infected tissues and not in the proplastids of sterile tissues. From these results, it appears that at least the last two steps of casbene biosynthesis, geranylgeranyl pyrophosphate synthetase and casbene synthetase, are induced during the process of infection, and that the enzymes responsible for the conversion of isopentenyl pyrophosphate to casbene are localized in proplastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号