首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Constitutive expression of a cholesterol-7alpha-hydroxylase (CYP7A1) transgene in LDL receptor-deficient mice blocked the ability of a cholesterol-enriched diet to increase plasma levels of apolipoprotein B-containing lipoproteins. LDL receptor-deficient mice expressing the CYP7A1 transgene exhibited complete resistance to diet-induced hypercholesterolemia and to the accumulation of cholesterol in the liver. Hepatic mRNA expression of liver X receptor-inducible ABCG5 and ABCG8 was decreased in CYP7A1 transgenic, LDL receptor-deficient mice fed a cholesterol-enriched diet. Thus, increased biliary cholesterol excretion could not account for the maintenance of cholesterol homeostasis. CYP7A1 transgenic, LDL receptor-deficient mice fed the cholesterol-enriched diet exhibited decreased jejunal Niemann-Pick C1-Like 1 protein (NPC1L1) mRNA expression, an important mediator of intestinal cholesterol absorption. A taurocholate-enriched diet also decreased NPC1L1 mRNA expression in a farnesoid X receptor-independent manner. Reduced expression of NPC1L1 mRNA was associated with decreased cholesterol absorption ( approximately 20%; P < 0.05) exhibited by CYP7A1 transgenic LDL receptor-deficient mice fed the cholesterol-enriched diet. The combined data show that enhanced expression of CYP7A1 is an effective means to prevent the accumulation of cholesterol in the liver and of atherogenic apolipoprotein B-containing lipoproteins in plasma.  相似文献   

2.
The lipolysis-stimulated lipoprotein receptor, LSR, is a multimeric protein complex in the liver that undergoes conformational changes upon binding of free fatty acids, thereby revealing a binding site (s) that recognizes both apoB and apoE. Complete inactivation of the LSR gene is embryonic lethal in mice. Here we show that removal of a single LSR allele (LSR(-/+)) caused statistically significant increases in both plasma triglyceride and cholesterol levels, a 2-fold increase in plasma triglyceride changes during the post-prandial phase, and delayed clearance of lipid emulsions or a high fat meal. The longer postprandial lipoprotein clearance time observed in LSR(-/+) mice was further increased in LSR(-/+) mice lacking functional low density lipoprotein (LDL) receptors. LSR(-/+) mice placed on a Western-type diet displayed higher plasma triglycerides and cholesterol levels, increased triglyceride-rich lipoproteins and LDL, and increased aorta lipid content, as compared with control mice on the same diet. Furthermore, a direct correlation was observed between the hyperlipidemia and weight gain but only in the LSR(-/+) mice. Knockdown of LSR expression by small interfering RNA in mouse Hepa1-6 cells led to decreased internalization of both DiI-labeled cyclohexanedione-LDL and very low density lipoprotein in the presence of oleate. These data led us to conclude that LSR contributes to the physiological clearance of atherogenic triglyceride-rich lipoproteins and LDL. We propose that LSR cooperates with the LDL receptor in the final hepatic processing of apoB-containing lipoproteins and represents a novel therapeutic target for the treatment of hyperlipidemia associated with obesity and atherosclerosis.  相似文献   

3.
Smokers with airflow obstruction have an increased risk of atherosclerosis, but the relationship between the pathogenesis of these diseases is not well understood. To determine whether hypercholesterolemia alters lung inflammation and emphysema formation, we examined the lung phenotype of two hypercholesterolemic murine models of atherosclerosis at baseline and on a high-fat diet. Airspace enlargement developed in the lungs of apolipoprotein E-deficient (Apoe(-/-)) mice exposed to a Western-type diet for 10 wk. An elevated number of macrophages and lymphocytes accompanied by an increase in matrix metalloproteinase-9 (MMP-9) activity and MMP-12 expression was observed in the lungs of Apoe(-/-) mice on a Western-type diet. In contrast, low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice did not exhibit lung destruction or inflammatory changes. Most importantly, we revealed augmented expression of the downstream targets of the Toll-like receptor (TLR) pathway, interleukin-1 receptor-associated kinase 1, and granulocyte colony-stimulating factor, in the lungs of Apoe(-/-) mice fed with a Western-type diet. In addition, we demonstrated overexpression of MMP-9 in Apoe(-/-) macrophages treated with TLR4 ligand, augmented with the addition of oxidized LDL, suggesting that emphysema in these mice results from the activation of the TLR pathway secondary to known abnormal cholesterol efflux. Our findings indicate that, in Apoe(-/-) mice fed with an atherogenic diet, abnormal cholesterol efflux leads to increased systemic inflammation with subsequent lung damage and emphysema formation.  相似文献   

4.
Although the anti-inflammatory effect of interleukin-1 (IL-1) receptor antagonist (IL-1Ra) has been described, the contribution of this cytokine to cholesterol metabolism remains unclear. Our aim was to ascertain whether deficiency of IL-1Ra deteriorates cholesterol metabolism upon consumption of an atherogenic diet. IL-1Ra-deficient mice (IL-1Ra(-/-)) showed severe fatty liver and portal fibrosis containing many inflammatory cells following 20 weeks of an atherogenic diet when compared with wild type (WT) mice. Expectedly, the levels of total cholesterol in IL-1Ra(-/-) mice were significantly increased, and the start of lipid accumulation in liver was observed earlier when compared with WT mice. Real-time PCR analysis revealed that IL-1Ra(-/-) mice failed to induce mRNA expression of cholesterol 7alpha-hydroxylase, which is the rate-limiting enzyme in bile acid synthesis, with concurrent up-regulation of small heterodimer partner 1 mRNA expression. Indeed, IL-1Ra(-/-) mice showed markedly decreased bile acid excretion, which is elevated in WT mice to maintain cholesterol level under atherogenic diet feeding. Therefore, we conclude that the lack of IL-1Ra deteriorates cholesterol homeostasis under atherogenic diet-induced inflammation.  相似文献   

5.
MicroRNAs modulate processes associated with cell cycle control and differentiation. Here we explored the potential of microRNAs in the modulation of hepatic lipid metabolism and the development of nonalcoholic fatty liver disease.MicroRNA profiles of hepatocytes from low-density lipoprotein (LDL) receptor knockout mice fed a chow diet or a hypertriglyceridemia/fatty liver-inducing Western-type diet (WTD) were determined using quantitative real-time polymerase chain reaction. Ninety-seven of 103 microRNAs measured were expressed by hepatocytes and low variability between hepatocyte pools was observed. Feeding WTD coincided with a marked fivefold decrease in the relative expression level of miR-216 (P<.05) and miR-302a (P<.01). Interestingly, an increased hepatic miR-216 expression was detected in response to fasting. MicroRNA/biological function linkage analysis suggested that the change in hepatocyte microRNA profiles in response to high dietary lipid levels is associated with changes in cell cycle control and proliferation. In accordance with a diminished miR-302a expression on the WTD, hepatocyte mRNA expression levels of miR-302a target genes ABCA1 and in particular ELOVL6 were increased in response to WTD (twofold to ninefold). This suggests a role for miR-302a in hepatic cholesterol, fatty acid and glucose metabolism.In conclusion, we have shown that fatty liver development in LDL receptor knockout mice is associated with a significant change in the hepatocyte microRNA profile, i.e., a fivefold decrease in miR-216 and miR-302a expression. Based upon our comparative gene and microRNA expression studies it is anticipated that miR-302a may prove to be a valuable therapeutic target in the regulation of hepatic fatty acid utilization and insulin resistance.  相似文献   

6.
Scavenger receptor class B, type I (SRBI) is a key regulator of high density lipoprotein (HDL) metabolism. It facilitates the efflux of cholesterol from cells in peripheral tissues to HDL and mediates the selective uptake of cholesteryl esters from HDL in the liver. We investigated the effects of SRBI deficiency in the arterial wall and in the liver using SRBI-deficient mice and wild-type littermates fed a Western-type diet. The SRBI-deficient mice showed massive accumulation of cholesterol-rich HDL in the circulation, reflecting impaired delivery to the liver. Strikingly, SRBI deficiency did not alter hepatic cholesterol (ester) content nor did it affect the expression of key regulators of hepatic cholesterol homeostasis, including HMG-CoA reductase, the low density lipoprotein receptor, and cholesterol 7alpha-hydroxylase. However, a approximately 40% reduction in biliary cholesterol content was observed, and the expression of ABCG8 and ABCG5, ATP half-transporters implicated in the transport of sterols from the liver to the bile, was attenuated by 70 and 35%, respectively. In contrast to the situation in the liver, SRBI deficiency did result in lipid deposition in the aorta and atherosclerosis. Vascular mRNA analysis showed increased expression of inflammatory markers as well as of genes involved in cellular cholesterol homeostasis. Our data show that, although hepatic cholesterol homeostasis is maintained upon feeding a Western-type diet, SRBI deficiency is associated with de-regulation of cholesterol homeostasis in the arterial wall that results in an increased susceptibility to atherosclerosis.  相似文献   

7.
Dietary flaxseed has been shown to have potent antiatherogenic effects in rabbits. The purpose of the present study was to investigate the antiatherogenic capacity of flaxseed in an animal model that more closely represents the human atherosclerotic condition, the LDL receptor-deficient mouse (LDLrKO), and to identify the cellular mechanisms for these effects. LDLrKO mice were administered a regular diet (RG), a 10% flaxseed-supplemented diet (FX), or an atherogenic diet containing 2% cholesterol alone (CH) or supplemented with 10% flaxseed (CF), 5% flaxseed (CF5), 1% flaxseed (CF1), or 5% coconut oil (CS) for 24 wk. LDLrKO mice fed a cholesterol-supplemented diet exhibited a rise in plasma cholesterol without a change in triglycerides and an increase in atherosclerotic plaque formation. The CS mice exhibited elevated levels of plasma cholesterol, triglycerides, and saturated fatty acids and an increase in plaque development. Supplementation of the cholesterol-enriched diet with 10% (wt/wt) ground flaxseed lowered plasma cholesterol and saturated fatty acids, increased plasma ALA, and inhibited plaque formation in the aorta and aortic sinus compared with mice fed a diet supplemented with only dietary cholesterol. The expression of proliferating cell nuclear antigen (PCNA) and the inflammatory markers IL-6, mac-3, and VCAM-1 was increased in aortic tissue from CH and CS mice. This expression was significantly reduced or normalized when flaxseed was included in the diet. Our results demonstrate that dietary flaxseed can inhibit atherosclerosis in the LDLrKO mouse through a reduction of circulating cholesterol levels and, at a cellular level, via antiproliferative and anti-inflammatory actions.  相似文献   

8.
Regulation of cholesterol metabolism in cultured cells and in the liver is dependent on actions of the LDL receptor. However, nonhepatic tissues have multiple pathways of cholesterol uptake. One possible pathway is mediated by LPL, an enzyme that primarily hydrolyzes plasma triglyceride into fatty acids. In this study, LDL uptake and tissue cholesterol levels in heart and skeletal muscle of wild-type and transgenic mice with alterations in LPL expression were assessed. Overexpression of a myocyte-anchored form of LPL in heart muscle led to increased uptake of LDL and greater heart cholesterol levels. Loss of LDL receptors did not alter LDL uptake into heart or skeletal muscle. To induce LDL receptors, mice were treated with simvastatin. Statin treatment increased LDL receptor expression and LDL uptake by liver and skeletal muscle but not heart muscle. Plasma creatinine phosphokinase as well as muscle mitochondria, cholesterol, and lipid droplet levels were increased in statin-treated mice overexpressing LPL in skeletal muscle. Thus, pathways affecting cholesterol balance in heart and skeletal muscle differ.  相似文献   

9.
10.
The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.  相似文献   

11.
1. Hepatic uptake of low-density lipoprotein (LDL) in parenchymal cells and non-parenchymal cells was studied in control-fed and cholesterol-fed rabbits after intravenous injection of radioiodinated native LDL (125I-TC-LDL) and methylated LDL (131I-TC-MetLDL). 2. LDL was taken up by rabbit liver parenchymal cells, as well as by endothelial and Kupffer cells. Parenchymal cells, however, were responsible for 92% of the hepatic LDL uptake. 3. Of LDL in the hepatocytes, 89% was taken up via the B,E receptor, whereas 16% and 32% of the uptake of LDL in liver endothelial cells and Kupffer cells, respectively, was B,E receptor-dependent. 4. Cholesterol feeding markedly reduced B,E receptor-mediated uptake of LDL in parenchymal liver cells and in Kupffer cells, to 19% and 29% of controls, respectively. Total uptake of LDL in liver endothelial cells was increased about 2-fold. This increased uptake is probably mediated via the scavenger receptor. The B,E receptor-independent association of LDL with parenchymal cells was not affected by the cholesterol feeding. 5. It is concluded that the B,E receptor is located in parenchymal as well as in the non-parenchymal rabbit liver cells, and that this receptor is down-regulated by cholesterol feeding. Parenchymal cells are the main site of hepatic uptake of LDL, both under normal conditions and when the number of B,E receptors is down-regulated by cholesterol feeding. In addition, LDL is taken up by B,E receptor-independent mechanism(s) in rabbit liver parenchymal, endothelial and Kupffer cells. The non-parenchymal liver cells may play a quantitatively important role when the concentration of circulating LDL is maintained at a high level in plasma, being responsible for 26% of hepatic uptake of LDL in cholesterol-fed rabbits as compared with 8% in control-fed rabbits. The proportion of hepatic LDL uptake in endothelial cells was greater than 5-fold higher in the diet-induced hypercholesterolaemic rabbits than in controls.  相似文献   

12.
13.
Plasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoproteins and mediates HDL conversion. PLTP-overexpressing mice have increased atherosclerosis. However, mice do not express cholesteryl ester transfer protein (CETP), which is involved in the same metabolic pathways as PLTP. Therefore, we studied atherosclerosis in heterozygous LDL receptor-deficient (LDLR(+/-)) mice expressing both human CETP and human PLTP. We used two transgenic lines with moderately and highly elevated plasma PLTP activity. In LDLR(+/-)/huCETPtg mice, cholesterol is present in both LDL and HDL. Both are decreased in LDLR(+/-)/huCETPtg/huPLTPtg mice (>50%). An atherogenic diet resulted in high levels of VLDL+LDL cholesterol. PLTP expression caused a strong PLTP dose-dependent decrease in VLDL and LDL cholesterol (-26% and -69%) and a decrease in HDL cholesterol (-70%). Surprisingly, atherosclerosis was increased in the two transgenic lines with moderately and highly elevated plasma PLTP activity (1.9-fold and 4.4-fold, respectively), indicating that the adverse effect of the reduction in plasma HDL outweighs the beneficial effect of the reduction in apolipoprotein B (apoB)-containing lipoproteins. The activities of the antiatherogenic enzymes paraoxonase and platelet-activating factor acetyl hydrolase were both PLTP dose-dependently reduced ( approximately -33% and -65%, respectively). We conclude that expression of PLTP in this animal model results in increased atherosclerosis in spite of reduced apoB-containing lipoproteins, by reduction of HDL and of HDL-associated antioxidant enzyme activities.  相似文献   

14.
The low density lipoprotein receptor (LDLR) plays a major role in regulation of plasma cholesterol levels as a ligand for apolipoprotein B-100 and apolipoprotein E (apoE). Consequently, LDLR-deficient mice fed a Western-type diet develop significant hypercholesterolemia and atherosclerosis. ApoE not only mediates uptake of atherogenic lipoproteins via the LDLR and other cell-surface receptors, but also directly inhibits atherosclerosis. In this study, we examined the hypothesis that coexpression of the LDLR and apoE would have greater effects than either one alone on plasma cholesterol levels and the development of atherosclerosis in LDLR-deficient mice. LDLR-deficient mice fed a Western-type diet for 10 weeks were injected with recombinant adenoviral vectors encoding the genes for human LDLR, human apoE3, both LDLR and apoE3, or lacZ (control). Plasma lipids were analyzed at several time points after vector injection. Six weeks after injection, mice were analyzed for extent of atherosclerosis by two independent methods. As expected, LDLR expression alone induced a significant reduction in plasma cholesterol due to reduced VLDL and LDL cholesterol levels, whereas overexpression of apoE alone did not reduce plasma cholesterol levels. When the LDLR and apoE were coexpressed in this model, the effects on plasma cholesterol levels were no greater than with expression of the LDLR alone. However, coexpression did result in a substantial increase in large apoE-rich HDL particles. In addition, although the combination of cholesterol reduction and apoE expression significantly reduced atherosclerosis, its effects were no greater than with expression of the LDLR or apoE alone. In summary, in this LDLR-deficient mouse model fed a Western-type diet, there was no evidence of an additive effect of expression of the LDLR and apoE on cholesterol reduction or atherosclerosis.  相似文献   

15.
The fatty liver dystrophy (fld) mutant mouse is characterized by neonatal fatty liver and hypertriglyceridemia that resolve at weaning, and neuropathy affecting peripheral nerve in adulthood. We now report additional significant manifestations of this single gene mutation, which include adipose tissue deficiency, glucose intolerance, and increased susceptibility to atherosclerosis. In adult fld/fld mice, both white and brown fat pads exhibit an 80% reduction in mass compared with wild-type controls, and consist of immature adipocytes as assessed by morphological and molecular criteria. The lack of lipid accumulation in fld/fld adipose tissue could be attributed, in part, to a failure to induce expression of lipoprotein lipase and enzymes involved in fatty acid synthesis, such as fatty acid synthase and acetyl-CoA carboxylase. Related to the deficiency of adipose tissue, fld/fld mice were also found to exhibit profound glucose intolerance, modest hyperinsulinemia, and reduced tissue response to insulin. As insulin resistance is a important risk factor in vascular disease, we examined susceptibility of fld/fld mice to diet-induced atherosclerosis. Mutant mice fed an atherogenic diet developed 2-fold greater aortic lesions than their wild-type counterparts, despite having a less atherogenic lipoprotein cholesterol profile. The fld adipose-deficient phenotype has both similarities to and distinctions from the group of rare human diseases known as lipodystrophies.  相似文献   

16.
Alcohol-induced fatty liver, a major cause of morbidity, has been attributed to enhanced hepatic lipogenesis and decreased fat clearance of unknown mechanism. Here we report that the steatosis induced in mice by a low-fat, liquid ethanol diet is attenuated by concurrent blockade of cannabinoid CB1 receptors. Global or hepatocyte-specific CB1 knockout mice are resistant to ethanol-induced steatosis and increases in lipogenic gene expression and have increased carnitine palmitoyltransferase 1 activity, which, unlike in controls, is not reduced by ethanol treatment. Ethanol feeding increases the hepatic expression of CB1 receptors and upregulates the endocannabinoid 2-arachidonoylglycerol (2-AG) and its biosynthetic enzyme diacylglycerol lipase beta selectively in hepatic stellate cells. In control but not CB1 receptor-deficient hepatocytes, coculture with stellate cells from ethanol-fed mice results in upregulation of CB1 receptors and lipogenic gene expression. We conclude that paracrine activation of hepatic CB1 receptors by stellate cell-derived 2-AG mediates ethanol-induced steatosis through increasing lipogenesis and decreasing fatty acid oxidation.  相似文献   

17.
Park JY  Seong JK  Paik YK 《Proteomics》2004,4(2):514-523
We report here a proteomic analysis of differentially expressed liver proteins of both C57BL/6J (B6, atherosclerosis-susceptible strain) and C3H/HeJ mice (C3H, atherosclerosis-resistant strain), which were fed either control or a high-fat enriched atherogenic diet for eight weeks. We observed differential patterns of plasma lipids between the two strains when both were fed atherogenic diets. That is, although low density lipoprotein cholesterol level was highly elevated in both, the levels of total cholesterol and triglyceride in B6 mice were much lower than those in C3H mice when they were fed atherogenic diets. However, the high density lipoprotein cholesterol level was increased in the latter but decreased in the former. Histopathological observation revealed that more prominent lipid droplets were present in B6 mice than in C3H mice, when they were maintained on the atherogenic diets. Proteomic analysis of liver tissues of these two strains showed that a total of 30 proteins were significantly changed in the livers obtained from both strains after being fed the atherogenic diet. Of these, 14 protein spots including carbonic anhydrase III, senescence marker protein 30 and selenium binding protein 2 were differentially changed only in B6 mice, which was also confirmed in part by Western blotting. An additional 16 protein spots including glutathione S-transferase subclass, apolipoprotein E and chaperonin proteins were changed in both strains. We also identified 28 proteins that were differentially expressed in the livers of both B6 and C3H mice, regardless of diet feeding condition. Of these, 4 protein spots in B6 mice and 11 protein spots in C3H mice were up-regulated. Thirteen strain specific protein spots including antioxidant protein 2, apolipoprotein E and apolipoprotein A-I were also detected in different positions in two-dimensional electrophoresis. These results suggest a clear distinction in differential expression of oxidative stress proteins and lipid metabolism related proteins between the two strains in response to atherogenic diet feeding, which might account for their difference in susceptibility to atherogenesis.  相似文献   

18.
High density lipoprotein (HDL) can protect low density lipoprotein (LDL) against oxidation. Oxidized cholesterol esters from LDL can be transferred to HDL and efficiently and selectively removed from the blood circulation by the liver and adrenal in vivo. In the present study, we investigated whether scavenger receptor BI (SR-BI) is responsible for this process. At 30 min after injection, the selective uptake of oxidized cholesterol esters from HDL for liver and adrenal was 2.3- and 2.6-fold higher, respectively, than for native cholesterol esters, whereas other tissues showed no significant difference. The selective uptake of oxidized cholesterol esters from HDL by isolated liver parenchymal cells could be blocked for 75% by oxidized LDL and for 50% by phosphatidylserine liposomes, both of which are known substrates of SR-BI. In vivo uptake of oxidized cholesterol esters from HDL by parenchymal cells decreased by 64 and 81% when rats were treated with estradiol and a high cholesterol diet, respectively, whereas Kupffer cells showed 660 and 475% increases, respectively. These contrasting changes in oxidized cholesterol ester uptake were accompanied by similar contrasting changes in SR-BI expression of parenchymal and Kupffer cells. The rates of SR-BI-mediated selective uptake of oxidized and native cholesterol esters were analyzed in SR-BI-transfected Chinese hamster ovary cells. SR-BI-mediated selective uptake was 3.4-fold higher for oxidized than for native cholesterol esters (30 min of incubation). It is concluded that in addition to the selective uptake of native cholesterol esters, SR-BI is responsible for the highly efficient selective uptake of oxidized cholesterol esters from HDL and thus forms an essential mediator in the HDL-associated protection system for atherogenic oxidized cholesterol esters.  相似文献   

19.
20.
Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMG-CoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoprotein-triglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号