首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipoxygenase products (leukotrienes) have been proposed as the mediators of pulmonary hypoxic vasoconstriction. However, the supporting data are inconclusive because the lipoxygenase and leukotriene receptor blockers that reduce hypoxic vasoconstriction (such as diethylcarbamazine and the FPL's) have confounding effects. We investigated BW 755C, a potent inhibitor of both lipoxygenase and cyclooxygenase, in eight intact anesthetized dogs with acute left lower lobe atelectasis. We examined two manifestations of hypoxic vasoconstriction: shunt fraction, as an inverse indicator of regional constriction in response to local hypoxia, and the pulmonary pressor response to global alveolar hypoxia, as an index of general hypoxic vasoconstriction. During normoxia, shunt fraction, measured using a sulfur hexafluoride infusion, was 32.0 +/- 7.0%. The pulmonary pressor response to hypoxia, defined as the increase in pulmonary end-diastolic gradient produced by 10% O2 inhalation, averaged 4.5 +/- 1.8 mmHg. Then, during normoxia, BW 755C was administered. Shunt fraction fell in all eight dogs from the previous mean of 32% to 25.5 +/- 6.1% (t = 6.5, P less than 0.0005). The hypoxic pressor response rose in all dogs, from the previous 4.5 mmHg to 9.0 +/- 3.5 mmHg (t = 4.5, P less than 0.005). BW 755C enhances hypoxic vasoconstriction, an effect consistent with its activity as a cyclooxygenase inhibitor. These data do not support a substantive role for the lipoxygenase pathway in hypoxic vasoconstriction.  相似文献   

2.
To evaluate leukotriene (LT) C4 as a mediator of hypoxic pulmonary vasoconstriction, we examined the effects of FPL55712, a putative LT antagonist, and indomethacin, a cyclooxygenase inhibitor, on vasopressor responses to LTC4 and hypoxia (inspired O2 tension = 25 Torr) in isolated ferret lungs perfused with a constant flow (50 ml.kg-1.min-1). Pulmonary arterial injections of LTC4 caused dose-related increases in pulmonary arterial pressure during perfusion with physiological salt solution containing Ficoll (4 g/dl). FPL55712 caused concentration-related inhibition of the pressor response to LTC4 (0.6 micrograms). Although 10 micrograms/ml FPL55712 inhibited the LTC4 pressor response by 61%, it did not alter the response to hypoxia. At 100 microgram/ml, FPL55712 inhibited the responses to LTC4 and hypoxia by 73 and 71%, respectively, but also attenuated the vasoconstrictor responses to prostaglandin F2 alpha (78% at 8 micrograms), phenylephrine (68% at 100 micrograms), and KCl (51% at 40 mM). At 0.5 microgram/ml, indomethacin significantly attenuated the pressor response to arachidonic acid but did not alter responses to LTC4 or hypoxia. These results suggest that in isolated ferret lungs 1) the vasoconstrictor response to LTC4 did not depend on release of cyclooxygenase products and 2) LTC4 did not mediate hypoxic vasoconstriction.  相似文献   

3.
Lipoxygenase products have been suggested as mediators of the hypoxic pulmonary pressor response in newborn animals. Data supporting this suggestion are equivocal, since lipoxygenase and leukotriene receptor antagonists that have been used may produce vasodilation because of phosphodiesterase inhibition. We used a leukotriene receptor antagonist L 649923, which appears not to have smooth muscle relaxant activity. L 649923 blocks pressor responses to leukotriene D4 (LTD4) without diminishing the pressor response to hypoxia. Also, BW 755C did not block the pressor response to hypoxia in newborn sheep and goats, whereas the pressor response to LTD4 (75 ng/kg) was depressed significantly. In newborn sheep there was an augmented response to hypoxia with BW 755C, which is consistent with cyclooxygenase inhibition. Finally, the thromboxane receptor antagonist SQ 29548 was investigated in both species. With this agent the pressor response to LTD4 in contrast to that of hypoxia was completely inhibited. We conclude that thromboxanes are involved in the pressor response to LTD4 in newborn lambs and goats. These data do not support the view that leukotrienes are involved in the ovine or caprine neonatal pulmonary pressor response to hypoxia.  相似文献   

4.
Leukotriene inhibitors preferentially inhibit hypoxic pulmonary vasoconstriction in isolated rat lungs. If lipoxygenase products are involved in the hypoxic pressor response they might be produced during acute alveolar hypoxia and a leukotriene inhibitor should block both the vasoconstriction and leukotriene production that occurs in response to hypoxia. We investigated in isolated blood perfused rat lungs whether leukotriene C4 (LTC4) could be recovered from whole lung lavage fluid during ongoing hypoxic vasoconstriction. Lung lavage from individual rats had slow reacting substance (SRS)-like myotropic activity by guinea pig ileum bioassay. Pooled lavage (10 lungs) as analyzed by reverse phase high performance liquid chromatography had an ultraviolet absorbing component at the retention time for LTC4. At radioimmunoassay, and SRS myotropic activity by bioassay. LTC4 was not found during normoxic ventilation, during normoxic ventilation after a hypoxic pressor response, or during vasoconstriction elicited by KCl. Diethylcarbamazine citrate, a leukotriene synthesis blocker, concomitantly inhibited the hypoxic vasoconstriction and LTC4 production. Thus 5-lipoxygenase products may play a role in the sequence of events leading to hypoxic pulmonary vasoconstriction.  相似文献   

5.
The role of endogenous radicals in the regulation of pulmonary vascular tone was evaluated by simultaneous measurement of pulmonary artery pressure and lung radical levels during exposure of isolated rat lungs to varying inspired O2 concentrations (0-95%) and angiotensin II. Lung radical levels, measured "on-line" using luminol and lucigenin-enhanced chemiluminescence, decreased in proportion to the degree of alveolar hypoxia. Radical levels fell during hypoxia before the onset of pulmonary vasoconstriction and promptly returned to basal levels with restoration of normoxic ventilation. Mild alveolar hypoxia (10% O2), which failed to decrease chemiluminescence, did not trigger pulmonary vasoconstriction. Although chemiluminescence tended to decrease more as the hypoxic response strengthened, there was not a simple correlation between the magnitude of the change in chemiluminescence induced by hypoxia and the strength of the hypoxic pressor response. Normoxic chemiluminescence was largely inhibited by superoxide dismutase but not catalase. Superoxide dismutase also increased normoxic pulmonary vascular tone and the strength of the pressor response to hypoxia and angiotensin II. Thus the predominant activated O2 species in the lung, during normoxia, was the superoxide anion or a closely related substance. Alteration of endogenous radical levels can result in changes in vascular tone. It remains uncertain whether the decrease in lung radical production during hypoxia caused pulmonary vasoconstriction or was merely associated with hypoxic ventilation.  相似文献   

6.
Leukotriene C4 is produced during hypoxic pulmonary vasoconstriction and leukotriene inhibitors preferentially inhibit the hypoxic pressor response in rats. If lipoxygenase products are important in hypoxic vasoconstriction, then an animal deficient in arachidonic acid should have a blunted hypoxic pressor response. We investigated if vascular responsiveness was decreased in vascular rings and isolated perfused lungs from rats raised on an essential fatty acid deficient diet (EFAD) compared to rats raised on a normal diet. Rats raised on the EFAD diet had decreased esterified plasma arachidonic acid and increased 5-, 8-, 11- eicosatrieonic acid compared to rats raised on the normal diet (control). Compared to the time matched responses in control isolated perfused lungs the pressor responses to angiotensin II and alveolar hypoxia were blunted in lungs from the arachidonate deficient rats. This decreased pulmonary vascular responsiveness was not affected by the addition of indomethacin or arachidonic acid to the lung perfusate. Similarly, the pulmonary artery rings from arichidonate deficient rats demonstrated decreased reactivity to norepinephrine compared to rings from control rats. In contrast, the tension increases to norepinephrine were greater in aortic rings from the arachidonate deficient rats compared to control. Stimulated lung tissue from the arachidonate deficient animals produced less slow reacting substance and platelet activating factor like material but the same amount of 6-keto-PGF and TXB2 compared to control lungs. Thus there is an associated between altered vascular responsiveness and impairment of stimulated production of slow reacting substance and platelet activating factor like materiali rat raised on an EFAD diet.  相似文献   

7.
Leukotriene C4 is produced during hypoxic pulmonary vasoconstriction and leukotriene inhibitors preferentially inhibit the hypoxic pressor response in rats. If lipoxygenase products are important in hypoxic vasoconstriction, then an animal deficient in arachidonic acid should have a blunted hypoxic pressor response. We investigated if vascular responsiveness was decreased in vascular rings and isolated perfused lungs from rats raised on an essential fatty acid deficient diet (EFAD) compared to rats raised on a normal diet. Rats raised on the EFAD diet had decreased esterified plasma arachidonic acid and increased 5-, 8-, 11-eicosatrienoic acid compared to rats raised on the normal diet (control). Compared to the time matched responses in control isolated perfused lungs the pressor responses to angiotensin II and alveolar hypoxia were blunted in lungs from the arachidonate deficient rats. This decreased pulmonary vascular responsiveness was not affected by the addition of indomethacin or arachidonic acid to the lung perfusate. Similarly, the pulmonary artery rings from arachidonate deficient rats demonstrated decreased reactivity to norepinephrine compared to rings from control rats. In contrast, the tension increases to norepinephrine were greater in aortic rings from the arachidonate deficient rats compared to control. Stimulated lung tissue from the arachidonate deficient animals produced less slow reacting substance and platelet activating factor like material but the same amount of 6-keto-PGF1 alpha and TXB2 compared to control lungs. Thus there is an association between altered vascular responsiveness and impairment of stimulated production of slow reacting substance and platelet activating factor like material in rats raised on an EFAD diet.  相似文献   

8.
Leukotriene inhibitors preferentially inhibit hypoxic pulmonary vasoconstriction in isolated rat lungs. If lipoxygenase products are involved in the hypoxic pressor response they might be produced during acute alveolar hypoxia and a leukotriene inhibitor should block both the vasoconstriction and leukotriene production that occurs in response to hypoxia. We investigated in isolated blood perfused rat lungs whether leukotriene C4 (LTC4) could be recovered from whole lung lavage fluid during ongoing hypoxic vasoconstriction. Lung lavage from individual rats had slow reacting substance (SRS)-like myotropic activity by guinea pig ileum bioassay. Pooled lavage (10 lungs)_as analyzed by reverse phase high performance liquid chromatography had an ultraviolet absorbing component at the retention time for LTC4. At this retention time the element had both LTC4 immunoreactivitiy by radioimmunoassay, and SRS myotropic activity by bioassay. LTC4 was not found during normoxic ventilation, during normoxic ventilation after a hypoxic pressor response, or during vasoconstriction elicited by KCL. Diethylcarbamazine citrate, a leukotriene synthesis blocker, concomitantly inhibited the hypoxic vasoconstriction and LTC4 production. Thus 5-lipoxygenase products may play a role in the sequence of events leading to hypoxic pulmonary vasoconstriction.  相似文献   

9.
Piriprost and nordihydroguiaretic acid (NDGA), specific inhibitors of arachidonate lipoxygenase, inhibited phytohaemagglutinin (PHA)-stimulated breakdown of inositol lipids in human T lymphocytes. The dual inhibitors eicosatetraynoic acid (ETYA) and BW 755C, which inhibit both lipoxygenase and cyclooxygenase, also had similar actions, whereas indomethacin and acetylsalicyclic acid, which inhibit cyclooxygenase alone, did not. The effects of lipoxygenase inhibitors and dual inhibitors were reversible. These agents did not inhibit phosphatidylinositol-4,5-bisphosphate-specific phospholipase C (PIP2-PLC) in vitro. Bromophenacyl bromide, and irreversible inhibitor of phospholipase A2, also abolished PHA-stimulated inositol lipid breakdown without affecting PIP2-PLC in vitro. The results are consistent with a role for the PHA-stimulated generation of arachidonic acid and its conversion to lipoxygenase metabolites (e.g. leukotrienes and/or hydroxyeicosatetraenoic acids) as intermediate steps in the signal transduction pathway between cell-surface mitogen receptors and the stimulation of PIP2-PLC in lymphocytes.  相似文献   

10.
To determine whether hypoxic pulmonary vasoconstriction was associated with release of sulfidopeptide leukotrienes (SPLTs) from the lung, we measured SPLT activity by bioassay (guinea pig ileum) and radioimmunoassay in lymph, perfusate, and bronchoalveolar lavage (BAL) fluid from sheep lungs (n = 20) isolated and perfused in situ with a constant flow of autologous blood (100 ml.kg-1.min-1) containing indomethacin (60 micrograms/ml). The protocol consisted of three periods, each at least 1 h in duration. In experimental lungs, inspired O2 concentration (FIO2) was 28.2% in periods 1 and 3 and 4.2% in period 2. In control lungs, FIO2 was 28.2% throughout. Hypoxia increased pulmonary arterial pressure but did not alter peak tracheal pressure, lung lymph flow, or weight gain measured during the last 30 min of each period. SPLT activity was greatest in lung lymph and least in BAL fluid. Hypoxia did not alter SPLT activity in any fluid. Similar results were obtained in lungs not treated with indomethacin (n = 15). These data do not support the hypothesis that hypoxic pulmonary vasoconstriction is mediated by SPLTs.  相似文献   

11.
We here demonstrate that NK cell activity by human peripheral blood mononuclear cells (PBMC) against K562 or MOLT-4 target cells is rapidly and reversibly inhibited by two agents that inhibit the lipoxygenation of fatty acids, BW755C and nordihydroguaiaretic acid (NDGA). Natural killing by nonadherent PBMC was similarly inhibited by both agents, indicating that monocytes were not required for the effect. The inhibition of natural killing was not seen with indomethacin at concentrations that inhibit prostaglandin synthesis but not the lipoxygenation of arachidonic acid. Moreover, indomethacin did not alter inhibition by either BW755C or NDGA. Thus, suppression of natural killing by these agents was not mediated by the effects on prostaglandin synthesis; neither agent inhibited target cell binding. These results suggest that products of lipoxygenation are required for target cell lysis by human NK cells.  相似文献   

12.
In a conscious newborn piglet model, exogenous leukotriene D4 was found to be a potent pulmonary and systemic vasoconstrictor with significant left ventricular depressant effect. The pulmonary pressor effect was seen only in the arterioles and not the veins. In hypoxia the pulmonary response was less. The findings were similar to that in lambs. The role of leukotrienes in hypoxic pulmonary vasoconstriction and the foetal pulmonary circulation needs further elucidation.  相似文献   

13.
Control mechanisms operating through a cytochrome P-450 system have emerged lately as a possible important determinant of pulmonary hemodynamics. Their action may be expressed in the adjustment of vascular tone under both physiologic and pathophysiologic conditions. One such condition is the pulmonary constrictor response to hypoxia. The identity of the effector agent, or agents, is not known, though there are data implicating monooxygenase products of arachidonic acid. From this premise, we wanted to evaluate the effect of cytochrome P-450 inhibitors on basal pulmonary vascular tone during normoxia, and their effect upon hypoxic pulmonary vasoconstriction response. Experiments were performed in an isolated, perfused lung preparation from 1- and 7-day-old piglets, and the effects of two cytochrome P-450 inhibitors (metyrapone and ketoconazole) were tested on the perfusion pressure. At 10(-5) and 10(-4) M, metyrapone caused a modest, but significant, increase in pulmonary pressure (p less than 0.05) in 7-day-old preparations, while it was without effect in the 1-day-old preparation. Similarly, ketoconazole at concentrations from 10(-6) M upwards increased the perfusion pressure in the older animal (p less than 0.01). Responses to the inhibitors were not seen in preparations that had been pretreated with a cyclooxygenase inhibitor (indomethacin, 2.8 x 10(-6) M) or a dual cyclooxygenase-lipoxygenase inhibitor (BW755C, 10(-5) M). Hypoxic vasoconstriction was marginally enhanced by 10(-4) M metyrapone, while it was affected inconsistently by 10(-5) M ketoconazole. We conclude that vasoactive agents formed through cytochrome P-450 reactions have a minor role, or no role at all, in the control of pulmonary hemodynamics in the newborn pig.  相似文献   

14.
Effects of intracellular pH on hypoxic vasoconstriction in rat lungs   总被引:1,自引:0,他引:1  
Isolated rat lungs perfused with physiological salt-Ficoll solutions were studied to test whether hypoxic pulmonary vasoconstriction was potentiated by increases in intracellular pH (pHi) and blunted by decreases in pHi. Whereas addition to perfusate of 5 nM phorbol myristate acetate (PMA), a stimulator of exchange of intracellular H+ for extracellular Na+, potentiated hypoxic vasoconstriction, 1 mM amiloride, an inhibitor of Na+-H+ exchange, blunted the hypoxic response. Hypoxic vasoconstriction was also potentiated by the weak bases NH4Cl (20 mM), methylamine (10 mM), and imidazole (5 mM) and was inhibited by the weak acid sodium acetate (40 mM). NH4Cl, imidazole, and acetate had the same effects on KCl-induced vasoconstriction and on the hypoxic response. Hypoxic vasoconstriction was greater in lungs perfused with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered solution than in those perfused with CO2/HCO3--buffered solution. Similarly, lungs perfused with CO2/HCO3--buffered solution containing 1.8 mM Cl- (NaNO3 and KNO3 substituted for NaCl and KCl) had larger hypoxic and angiotensin II pressor responses than those perfused with 122.5 mM Cl-. Because PMA, NH4Cl, methylamine, imidazole, HEPES-buffered solutions, and low-Cl- solutions can cause increases in pHi and amiloride and acetate can cause decreases in pHi, these results suggest that intracellular alkalosis and acidosis, respectively, potentiate and blunt vasoconstrictor responses to hypoxia and other stimuli in isolated rat lungs. These effects could be related to pHi-dependent changes in either the sensitivity of the arterial smooth muscle contractile machinery to Ca2+ or the release of a vasoactive mediator or modulator by some other lung cell.  相似文献   

15.
Five antioxidative agents (BW755C, 1-naphtol, NDGA, propylgallate and quercetin) were compared with indomethacin and ETYA for their effects on (14C) arachidonic acid metabolism by cyclooxygenase (CO) and lipoxygenase (LPO) enzymes in intact human platelets. All tested compounds inhibited CO activity in a concentration-dependent manner. LPO activity was suppressed by NDGA, propylgallate, quercetin and ETYA but strongly enhanced by BW755C, 1-napthol and indomethacin. Whereas NDGA and ETYA showed almost equipotent inhibitory effects towards both fatty acid oxygenases, propylgallate and quercetin were found to be respectively 6.5 and 4 times better inhibitors of LPO than of CO activities.These data indicate that antioxidants affect arachidonic acid metabolism in intact human platelets in different ways: BW755C and 1-naphtol exerted the same activity as indomethacin, a selective CO blocker, whereas NDGA, propylgallate and quercetin behaved as ETYA, a dual CO-LPO inhibitor. Considering their inhibition selectivity, propylgallate and quercetin may serve as prototypes for more specific blockers of LPO activity.  相似文献   

16.
The effects of endothelium-dependent vasodilation on pulmonary vascular hemodynamics were evaluated in a variety of in vivo and in vitro models to determine 1) the comparability of the hemodynamic effects of acetylcholine (ACh), bradykinin (BK), nitric oxide (NO), and 8-bromo-guanosine 3',5'-cyclic monophosphate (cGMP), 2) whether methylene blue is a useful inhibitor of endothelium-dependent relaxing factor (EDRF) activity in vivo, and 3) the effect of monocrotaline-induced pulmonary hypertension on the responsiveness of the pulmonary vasculature to ACh. In isolated rat lungs, which were preconstricted with hypoxia, ACh, BK, NO, and 8-bromo-cGMP caused pulmonary vasodilation, which was not inhibited by maximum tolerable doses of methylene blue. Methylene blue did not inhibit EDRF activity in any model, despite causing increased pulmonary vascular tone and responsiveness to various constrictor agents. There were significant differences in the hemodynamic characteristics of ACh, BK, and NO. In the isolated lung, BK and NO caused transient decreases of hypoxic vasoconstriction, whereas ACh caused more prolonged vasodilation. Pretreatment of these lungs with NO did not significantly inhibit ACh-induced vasodilation but caused BK to produce vasoconstriction. Tachyphylaxis, which was agonist specific, developed with repeated administration of ACh or BK but not NO. Tachyphylaxis probably resulted from inhibition of the endothelium-dependent vasodilation pathway proximal to NO synthesis, because it could be overcome by exogenous NO. Pretreatment with 8-bromo-cGMP decreased hypoxic pulmonary vasoconstriction and, even when the hypoxic pressor response had largely recovered, subsequent doses of ACh and NO failed to cause vasodilation, although BK produced vasoconstriction. These findings are compatible with the existence of feedback inhibition of the endothelium-dependent relaxation by elevation of cGMP levels. Responsiveness to ACh was retained in lungs with severe monocrotaline-induced pulmonary hypertension. Many of these findings would not have been predicted based on in vitro studies and illustrate the importance for expanding studies of EDRF to in vivo and ex vivo models.  相似文献   

17.
The effects of the 5-lipoxygenase inhibitors nordihydroguiaretic acid (NDGA), 5, 8, 11, 14-eicosatetraynoic acid (ETYA), 1-phenyl-3-pyrazolidone (phenidone) and BW-755c, on the contractile response to LTC4 or LTD4 were examined on the isolated guinea pig trachea. Responses to either LTC4 or LTD4 were obtained on indomethacin treated tissues, in the presence of either L-serine-borate complex or L-cysteine, respectively, to inhibit metabolic conversion of the leukotrienes. NDGA (30 microM) and ETYA (100 microM) produced a selective competitive antagonism of LTD4-induced contractions, while phenidone antagonized both LTC4- and LTD4-induced responses in a non-competitive manner. In contrast, BW-755c (30 microM) did not significantly antagonize LTC4 or LTD4 concentration-response curves. The results suggest that leukotriene antagonism may be produced by large concentrations of some 5-lipoxygenase inhibitors.  相似文献   

18.
It has been suggested that a specific phosphagen pool might serve a sensor function, allowing direct detection of alveolar hypoxia by the pulmonary vascular smooth muscle. The possibility that phosphocreatine (PCr) levels could serve as such a sensor was assessed in isolated rat lungs. Pulmonary vascular reactivity to angiotensin II and alveolar hypoxia was assessed in lungs from control and PCr-depleted rats. PCr depletion was accomplished by feeding rats a diet containing 2% beta-guanidino propionic acid (beta-GPA), an competitive inhibitor of creatine uptake. Total creatine was depleted in beta-GPA lungs, compared to control lungs (p less than 0.05). Lung PCr levels were undetectable by the available 31P NMR spectroscopy system. PCr and creatine were depleted in hearts from beta-GPA rats relative to control hearts (p less than 0.001). Normoxic pulmonary artery pressure and the pressor responses to angiotensin II and hypoxia were not qualitatively or quantitatively altered by the diet indicating either that PCr is not a critical participant in hypoxic pulmonary vasoconstriction or that the degree of PCr depletion achieved was inadequate to expose its role in the hypoxic pressor response.  相似文献   

19.
The effects of leukotrienes, the leukotriene antagonist FPL55712 (sodium 7-(3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)-2-hydroxypropoxy)-4-oxo-8-propyl-4H-1-benzopyran-2-carboxylate), and inhibitors of arachidonate lipoxygenase and cyclo-oxygenase (compound BW755C, 3-amino-1-(m-(trifluoromethyl)-phenyl)-2-pyrazoline; ETYA, 5,8,11,14-eicosatetraynoic acid) were studied in an isolated preparation of ductus arteriosus from mature foetal lambs. Leukotrienes (LT) C4 and D4 produced a modest relaxation of the ductus but only at the highest concentrations tested (10(-7) to 10(-6) M) and under hypoxic conditions (PO2, 6--9 Torr (1 Torr = 133.322 Pa)). LTB4 had no effect at any concentration tested. BW755C (10(-6) to 10(-5) M) and FPL55712 (10(-5) M) contracted the hypoxic ductus; however, their action was abolished by pretreatment of the tissue with the cyclooxygenase inhibitor indomethacin (2.8 x 10(-6) M). Indomethacin-treated preparations were also unresponsive to ETYA 3 x 10(-5) M. The contraction of hypoxic tissues to either BW755C or FPL55712 increased further upon raising the oxygen tension of the medium (PO2 591--691 Torr). These findings indicate that leukotrienes and allied compounds formed from lipoxygenase-catalysed reactions do not contribute to prenatal patency of the ductus and are unlikely to have a role in its closure at birth. It is also confirmed that prostaglandin E2 is essential for keeping the vessel patent in the foetus.  相似文献   

20.
The role of histamine as a mediator of hypoxic pulmonary vasoconstriction was examined in intact anesthetized dogs. Antagonism of histamine vasoconstrictor (H1) receptors with a classic antihistaminic drug (chlorpheniramine) failed to prevent or modify the pulmonary vascular responses to hypoxia (10% O2). Blockade of histamine vasodilator (H2) receptors with a newly synthesized blocking agent (metiamide) potentiated the vasoconstriction induced by hypoxia and prevented the normal increase in heart rate. Combined H1- and H2-receptor blockade also did not prevent or reduce the hypoxic pulmonary pressor response, although it did effectively abolish the cardiovascular actions of infused histamine. In other dogs, histamine infused (3.6 mug/kg per min) during hypoxia attenuated the pulmonary vasoconstriction induced by hypoxia. The results imply that, in the dog, histamine does not mediate hypoxic pulmonary vasoconstriction. However, histamine does appear to be released during hypoxia, and it may play a role in modulating the pulmonary vascular responses to hypoxia by opposing the hypoxia induced vasoconstriction. The results also imply that histamine may be responsible for the increase in heart rate during hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号