首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PDZ domain proteins play critical roles in binding, clustering and subcellular targeting of membrane receptors and ion channels. PDZ domains in multi-PDZ proteins often are arranged in groups with highly conserved spacing and intervening sequences; however, the functional significance of such tandem arrangements of PDZs is unclear. We have solved the three-dimensional structure of the first two PDZ domains of postsynaptic density protein-95 (PSD-95 PDZ1 and PDZ2), which are closely linked to each other in the PSD-95 family of scaffold proteins. The two PDZs have limited freedom of rotation and their C-terminal peptide-binding grooves are aligned with each other with an orientation preference for binding to pairs of C termini extending in the same direction. Increasing the spacing between PDZ1 and PDZ2 resulted in decreased binding between PDZ12 and its dimeric targets. The same mutation impaired the functional ability of PSD-95 to cluster Kv1.4 potassium channels in heterologous cells. The data presented provide a molecular basis for preferential binding of PSD-95 to multimeric membrane proteins with appropriate C-terminal sequences.  相似文献   

2.
PDZ domains (PDZs), the most common interaction domain proteins, play critical roles in many cellular processes. PDZs perform their job by binding specific protein partners. However, they are very promiscuous, binding to more than one protein, yet selective at the same time. We examined the binding related dynamics of various PDZs to have insight about their specificity and promiscuity. We used full atomic normal mode analysis and a modified coarse‐grained elastic network model to compute the binding related dynamics. In the latter model, we introduced specificity for each single parameter constant and included the solvation effect implicitly. The modified model, referred to as specific‐Gaussian Network Model (s‐GNM), highlights some interesting differences in the conformational changes of PDZs upon binding to Class I or Class II type peptides. By clustering the residue fluctuation profiles of PDZs, we have shown: (i) binding selectivities can be discriminated from their dynamics, and (ii) the dynamics of different structural regions play critical roles for Class I and Class II specificity. s‐GNM is further tested on a dual‐specific PDZ which showed only Class I specificity when a point mutation exists on the βA‐βB loop. We observe that the binding dynamics change consistently in the mutated and wild type structures. In addition, we found that the binding induced fluctuation profiles can be used to discriminate the binding selectivity of homolog structures. These results indicate that s‐GNM can be a powerful method to study the changes in binding selectivities for mutant or homolog PDZs. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation.  相似文献   

4.
PDZ (PSD-95/Dlg/ZO-1) binding domains often serve as cellular traffic engineers, controlling the localization and activity of a wide variety of binding partners. As a result, they play important roles in both physiological and pathological processes. However, PDZ binding specificities overlap, allowing multiple PDZ proteins to mediate distinct effects on shared binding partners. For example, several PDZ domains bind the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), an epithelial ion channel mutated in CF. Among these binding partners, the CFTR-associated ligand (CAL) facilitates post-maturational degradation of the channel and is thus a potential therapeutic target. Using iterative optimization, we previously developed a selective CAL inhibitor peptide (iCAL36). Here, we investigate the stereochemical basis of iCAL36 specificity. The crystal structure of iCAL36 in complex with the CAL PDZ domain reveals stereochemical interactions distributed along the peptide-binding cleft, despite the apparent degeneracy of the CAL binding motif. A critical selectivity determinant that distinguishes CAL from other CFTR-binding PDZ domains is the accommodation of an isoleucine residue at the C-terminal position (P0), a characteristic shared with the Tax-interacting protein-1. Comparison of the structures of these two PDZ domains in complex with ligands containing P0 Leu or Ile residues reveals two distinct modes of accommodation for β-branched C-terminal side chains. Access to each mode is controlled by distinct residues in the carboxylate-binding loop. These studies provide new insights into the primary sequence determinants of binding motifs, which in turn control the scope and evolution of PDZ interactomes.  相似文献   

5.
Modulation of protein binding specificity is important for basic biology and for applied science. Here we explore how binding specificity is conveyed in PDZ (postsynaptic density protein-95/discs large/zonula occludens-1) domains, small interaction modules that recognize various proteins by binding to an extended C terminus. Our goal was to engineer variants of the Erbin PDZ domain with altered specificity for the most C-terminal position (position 0) where a Val is strongly preferred by the wild-type domain. We constructed a library of PDZ domains by randomizing residues in direct contact with position 0 and in a loop that is close to but does not contact position 0. We used phage display to select for PDZ variants that bind to 19 peptide ligands differing only at position 0. To verify that each obtained PDZ domain exhibited the correct binding specificity, we selected peptide ligands for each domain. Despite intensive efforts, we were only able to evolve Erbin PDZ domain variants with selectivity for the aliphatic C-terminal side chains Val, Ile and Leu. Interestingly, many PDZ domains with these three distinct specificities contained identical amino acids at positions that directly contact position 0 but differed in the loop that does not contact position 0. Computational modeling of the selected PDZ domains shows how slight conformational changes in the loop region propagate to the binding site and result in different binding specificities. Our results demonstrate that second-sphere residues could be crucial in determining protein binding specificity.  相似文献   

6.
PDZ domains most commonly bind the C‐terminus of their protein targets. Typically the C‐terminal four residues of the protein target are considered as the binding motif, particularly the C‐terminal residue (P0) and third‐last residue (P‐2) that form the major contacts with the PDZ domain's “binding groove”. We solved crystal structures of seven human PDZ domains, including five of the seven PDLIM family members. The structures of GRASP, PDLIM2, PDLIM5, and PDLIM7 show a binding mode with only the C‐terminal P0 residue bound in the binding groove. Importantly, in some cases, the P‐2 residue formed interactions outside of the binding groove, providing insight into the influence of residues remote from the binding groove on selectivity. In the GRASP structure, we observed both canonical and noncanonical binding in the two molecules present in the asymmetric unit making a direct comparison of these binding modes possible. In addition, structures of the PDZ domains from PDLIM1 and PDLIM4 also presented here allow comparison with canonical binding for the PDLIM PDZ domain family. Although influenced by crystal packing arrangements, the structures nevertheless show that changes in the positions of PDZ domain side‐chains and the αB helix allow noncanonical binding interactions. These interactions may be indicative of intermediate states between unbound and fully bound PDZ domain and target protein. The noncanonical “perpendicular” binding observed potentially represents the general form of a kinetic intermediate. Comparison with canonical binding suggests that the rearrangement during binding involves both the PDZ domain and its ligand.  相似文献   

7.
PDZ domains bind to short segments within target proteins in a sequence-specific fashion. Glutamate receptor-interacting protein (GRIP)/ABP family proteins contain six to seven PDZ domains and interact via the sixth PDZ domain (class II) with the C termini of various proteins including liprin-alpha. In addition the PDZ456 domain mediates the formation of homo- and heteromultimers of GRIP proteins. To better understand the structural basis of peptide recognition by a class II PDZ domain and PDZ-mediated multimerization, we determined the crystal structures of the GRIP1 PDZ6 domain alone and in complex with a synthetic C-terminal octapeptide of human liprin-alpha at resolutions of 1.5 and 1.8 A, respectively. Remarkably, unlike other class II PDZ domains, Ile-736 at alphaB5 rather than conserved Leu-732 at alphaB1 makes a direct hydrophobic contact with the side chain of the Tyr at the -2 position of the ligand. Moreover, the peptide-bound structure of PDZ6 shows a slight reorientation of helix alphaB, indicating that the second hydrophobic pocket undergoes a conformational adaptation to accommodate the bulkiness of the Tyr side chain, and forms an antiparallel dimer through an interface located at a site distal to the peptide-binding groove. This configuration may enable formation of GRIP multimers and efficient clustering of GRIP-binding proteins.  相似文献   

8.
The tumor suppressor phosphatase PTEN is a key regulator of cell growth and apoptosis that interacts with PDZ domains from regulatory proteins, including MAGI-1/2/3, hDlg, and MAST205. Here we identified novel PTEN-binding PDZ domains within the MAST205-related proteins, syntrophin-associated serine/threonine kinase and MAST3, characterized the regions of PTEN involved in its interaction with distinctive PDZ domains, and analyzed the functional consequences on PTEN of PDZ domain binding. Using a panel of PTEN mutations, as well as PTEN chimeras containing distinct domains of the related protein TPTE, we found that the PTP and C2 domains of PTEN do not affect PDZ domain binding and that the C-terminal tail of PTEN (residues 350-403) provides selectivity to recognize specific PDZ domains from MAGI-2, hDlg, and MAST205. Binding of PTEN to the PDZ-2 domain from MAGI-2 increased PTEN protein stability. Furthermore, binding of PTEN to the PDZ domains from microtubule-associated serine/threonine kinases facilitated PTEN phosphorylation at its C terminus by these kinases. Our results suggest an important role for the C-terminal region of PTEN in the selective association with scaffolding and/or regulatory molecules and provide evidence that PDZ domain binding stabilizes PTEN and targets this tumor suppressor for phosphorylation by microtubule-associated serine/threonine kinases.  相似文献   

9.
The human homologue (hDIg) of the Drosophila discs-large tumor suppressor (DIg) is a multidomain protein consisting of a carboxyl- terminal guanylate kinase-like domain, an SH3 domain, and three slightly divergent copies of the PDZ (DHR/GLGF) domain. Here have examined the structural organization of the three PDZ domains of hDIg using a combination of protease digestion and in vitro binding measurements. Our results show that the PDZ domains are organized into two conformationally stable modules one (PDZ, consisting of PDZ domains 1 and 2, and the other (PDZ) corresponding to the third PDZ domain. Using amino acid sequencing and mass spectrometry, we determined the boundaries of the PDZ domains after digestion with endoproteinase Asp- N, trypsin, and alpha-chymotrypsin. The purified PDZ1+2, but not the PDZ3 domain, contains a high affinity binding site for the cytoplasmic domain of Shaker-type K+ channels. Similarly, we demonstrate that the PDZ1+2 domain can also specifically bind to ATP. Furthermore, we provide evidence for an in vivo interaction between hDIg and protein 4.1 and show that the hDIg protein contains a single high affinity protein 4.1-binding site that is not located within the PDZ domains. The results suggest a mechanism by which PDZ domain-binding proteins may be coupled to ATP and the membrane cytoskeleton via hDlg.  相似文献   

10.
PDZ domains are protein-protein interaction modules that generally bind to the C termini of their target proteins. The C-terminal four amino acids of a prospective binding partner of a PDZ domain are typically the determinants of binding specificity. In an effort to determine the structures of a number of PDZ domains we have included appropriate four residue extensions on the C termini of PDZ domain truncation mutants, designed for self-binding. Multiple truncations of each PDZ domain were generated. The four residue extensions, which represent known specificity sequences of the target PDZ domains and cover both class I and II motifs, form intermolecular contacts in the expected manner for the interactions of PDZ domains with protein C termini for both classes. We present the structures of eight unique PDZ domains crystallized using this approach and focus on four which provide information on selectivity (PICK1 and the third PDZ domain of DLG2), binding site flexibility (the third PDZ domain of MPDZ), and peptide-domain interactions (MPDZ 12th PDZ domain). Analysis of our results shows a clear improvement in the chances of obtaining PDZ domain crystals by using this approach compared to similar truncations of the PDZ domains without the C-terminal four residue extensions.  相似文献   

11.
Transient macromolecular complexes are often formed by protein-protein interaction domains (e.g. PDZ, SH2, SH3, WW) which recognize linear sequence motifs with in vitro affinities typically in the micromolar range. The analysis of the resulting interaction networks requires a quantification of domain specificity and selectivity towards all possible ligands with physiologically relevant affinity. As representative examples, we determined specificity as a function of ligand sequence-dependent affinity contributions by statistical analysis of peptide library screens for the AF6, ERBIN and SNA1 (alpha-1-syntrophin) PDZ domains. For this purpose, the three PDZ domains were first screened for binding with a peptide library comprising 6223 human C termini created by SPOT synthesis. Based on the detected ligand preferences, we designed focused peptide libraries (profile libraries). These libraries were used to quantify the affinity contributions of the four C-terminal ligand residues by means of ANOVA models (analysis of variance) relating the C-terminal ligand sequences to the corresponding dissociation constants. Our models agreed well with experimentally determined dissociation constants and allowed us to design super binding peptides. The latter were shown experimentally to bind to their cognate PDZ domains with the highest affinity. In addition, we determined structure-activity relationships and thereby rationalized the position-specific affinity contributions. Furthermore, we used the statistical models to predict the dissociation constants for the complete ligand sequence space and thus determined the specificity overlap for the three investigated PDZ domains (). Altogether, we present an efficient method for profiling protein-protein interaction domains that provides a biophysical picture of specificity and selectivity. This approach allows the rational design of functional experiments and provides a basis for simulating interaction networks in the field of systems biology.  相似文献   

12.
PDZ domains are protein-protein interaction modules that recognize specific C-terminal sequences to assemble protein complexes in multicellular organisms. By scanning billions of random peptides, we accurately map binding specificity for approximately half of the over 330 PDZ domains in the human and Caenorhabditis elegans proteomes. The domains recognize features of the last seven ligand positions, and we find 16 distinct specificity classes conserved from worm to human, significantly extending the canonical two-class system based on position -2. Thus, most PDZ domains are not promiscuous, but rather are fine-tuned for specific interactions. Specificity profiling of 91 point mutants of a model PDZ domain reveals that the binding site is highly robust, as all mutants were able to recognize C-terminal peptides. However, many mutations altered specificity for ligand positions both close and far from the mutated position, suggesting that binding specificity can evolve rapidly under mutational pressure. Our specificity map enables the prediction and prioritization of natural protein interactions, which can be used to guide PDZ domain cell biology experiments. Using this approach, we predicted and validated several viral ligands for the PDZ domains of the SCRIB polarity protein. These findings indicate that many viruses produce PDZ ligands that disrupt host protein complexes for their own benefit, and that highly pathogenic strains target PDZ domains involved in cell polarity and growth.  相似文献   

13.
Syntenin, a 33 kDa protein, interacts with several cell membrane receptors and with merlin, the product of the causal gene for neurofibromatosis type II. We report a crystal structure of the functional fragment of human syntenin containing two canonical PDZ domains, as well as binding studies for full-length syntenin, the PDZ tandem, and isolated PDZ domains. We show that the functional properties of syntenin are a result of independent interactions with target peptides, and that each domain is able to bind peptides belonging to two different classes: PDZ1 binds peptides from classes I and III, while PDZ2 interacts with classes I and II. The independent binding of merlin by PDZ1 and syndecan-4 by PDZ2 provides direct evidence for the coupling of syndecan-mediated signaling to actin regulation by merlin.  相似文献   

14.
A diverse family of PDZ domains has been identified, but the rules that govern their ligand specificity are not clear. Here we propose a novel classification of PDZ domains based on the nature of amino acids in the two critical positions in the PDZ domain fold. Using these principles, we classified PDZ domains present in the SMART database. Using yeast two-hybrid, in vitro pull-down and plasmon surface resonance assays, we demonstrated that in agreement with their position in the proposed classification the Mint1-1, hINADL-5, and PAR6 PDZ domains display similar dual ligand specificity. The proposed classification helps to organize PDZ domain containing proteins.  相似文献   

15.
Guanine nucleotide exchange factor proteins of the Tiam family are activators of the Rho GTPase Rac1 and critical for cell morphology, adhesion, migration, and polarity. These proteins are modular and contain a variety of interaction domains, including a single post-synaptic density-95/discs large/zonula occludens-1 (PDZ) domain. Previous studies suggest that the specificities of the Tiam1 and Tiam2 PDZ domains are distinct. Here, we sought to conclusively define these specificities and determine their molecular origin. Using a combinatorial peptide library, we identified a consensus binding sequence for each PDZ domain. Analysis of these consensus sequences and binding assays with peptides derived from native proteins indicated that these two PDZ domains have overlapping but distinct specificities. We also identified residues in two regions (S(0) and S(-2) pockets) of the Tiam1 PDZ domain that are important determinants of ligand specificity. Site-directed mutagenesis of four nonconserved residues in these two regions along with peptide binding analyses confirmed that these residues are crucial for ligand affinity and specificity. Furthermore, double mutant cycle analysis of each region revealed energetic couplings that were dependent on the ligand being investigated. Remarkably, a Tiam1 PDZ domain quadruple mutant had the same specificity as the Tiam2 PDZ domain. Finally, analysis of Tiam family PDZ domain sequences indicated that the PDZ domains segregate into four distinct families based on the residues studied here. Collectively, our data suggest that Tiam family proteins have highly evolved PDZ domain-ligand interfaces with distinct specificities and that they have disparate PDZ domain-dependent biological functions.  相似文献   

16.
PICK1 (protein interacting with C kinase 1) contains a single PDZ domain known to mediate interaction with the C termini of several receptors, transporters, ion channels, and kinases. In contrast to most PDZ domains, the PICK1 PDZ domain interacts with binding sequences classifiable as type I (terminating in (S/T)XPhi; X, any residue) as well as type II (PhiXPhi; Phi, any hydrophobic residue). To enable direct assessment of the affinity of the PICK1 PDZ domain for its binding partners we developed a purification scheme for PICK1 and a novel quantitative binding assay based on fluorescence polarization. Our results showed that the PICK1 PDZ domain binds the type II sequence presented by the human dopamine transporter (-WLKV) with an almost 15-fold and >100-fold higher affinity than the type I sequences presented by protein kinase Calpha (-QSAV) and the beta(2)-adrenergic receptor (-DSLL), respectively. Mutational analysis of Lys(83) in the alphaB1 position of the PDZ domain suggested that this residue mimics the function of hydrophobic residues present in this position in regular type II PDZ domains. The PICK1 PDZ domain was moreover found to prefer small hydrophobic residues in the C-terminal P(0) position of the ligand. Molecular modeling predicted a rank order of (Val > Ile > Leu) that was verified experimentally with up to a approximately 16-fold difference in binding affinity between a valine and a leucine in P(0). The results define the structural basis for the unusual binding pattern of the PICK1 PDZ domain by substantiating the critical role of the alphaB1 position (Lys(83)) and of discrete side chain differences in position P(0) of the ligands.  相似文献   

17.
PDZ domains are protein-protein interaction modules that typically bind to short peptide sequences at the carboxyl terminus of target proteins. Proteins containing multiple PDZ domains often bind to different trans-membrane and intracellular proteins, playing a central role as organizers of multimeric complexes. To characterize the rules underlying the binding specificity of different PDZ domains, we have assembled a novel repertoire of random peptides that are displayed at high density at the carboxyl terminus of the capsid D protein of bacteriophage lambda. We have exploited this combinatorial library to determine the peptide binding preference of the seven PDZ domains of human INADL, a multi-PDZ protein that is homologous to the INAD protein of Drosophila melanogaster. This approach has permitted the determination of the consensus ligand for each PDZ domain and the assignment to class I, class II, and to a new specificity class, class IV, characterized by the presence of an acidic residue at the carboxyl-terminal position. Homology modeling and site-directed mutagenesis experiments confirmed the involvement of specific residues at contact positions in determining the domain binding preference. However, these experiments failed to reveal simple rules that would permit the association of the chemical characteristics of any given residue in the peptide binding pocket to the preference for specific amino acid sequences in the ligand peptide. Rather, they suggested that to infer the binding preference of any PDZ domain, it is necessary to simultaneously take into account all contact positions by using computational procedures. For this purpose we extended the SPOT algorithm, originally developed for SH3 domains, to evaluate the probability that any peptide would bind to any given PDZ domain.  相似文献   

18.
PDZ domains are protein-protein interaction modules that are crucial for the assembly of structural and signalling complexes. They specifically bind to short C-terminal peptides and occasionally to internal sequences that structurally resemble such peptide termini. The binding of PDZ domains is dominated by the residues at the P(0) and P(-2) position within these C-terminal targets, but other residues are also important in determining specificity. In this study, we analysed the binding specificity of the third PDZ domain of protein tyrosine phosphatase BAS-like (PTP-BL) using a C-terminal combinatorial peptide phage library. Binding of PDZ3 to C-termini is preferentially governed by two cysteine residues at the P(-1) and P(-4) position and a valine residue at the P(0) position. Interestingly, we found that this binding is lost upon addition of the reducing agent dithiothrietol, indicating that the interaction is disulfide-bridge-dependent. Site-directed mutagenesis of the single cysteine residue in PDZ3 revealed that this bridge formation does not occur intermolecularly, between peptide and PDZ3 domain, but rather is intramolecular. These data point to a preference of PTP-BL PDZ3 for cyclic C-terminal targets, which may suggest a redox state-sensing role at the cell cortex.  相似文献   

19.
PDZ domains have been identified as part of an array of signaling proteins that are often unrelated, except for the well-conserved structural PDZ domain they contain. These domains have been linked to many disease processes including common Avian influenza, as well as very rare conditions such as Fraser and Usher syndromes. Historically, based on the interactions and the nature of bonds they form, PDZ domains have most often been classified into one of three classes (class I, class II and others - class III), that is directly dependent on their binding partner. In this study, we report on three unique feature extraction approaches based on the bigram and trigram occurrence and existence rearrangements within the domain''s primary amino acid sequences in assisting PDZ domain classification. Wavelet packet transform (WPT) and Shannon entropy denoted by wavelet entropy (WE) feature extraction methods were proposed. Using 115 unique human and mouse PDZ domains, the existence rearrangement approach yielded a high recognition rate (78.34%), which outperformed our occurrence rearrangements based method. The recognition rate was (81.41%) with validation technique. The method reported for PDZ domain classification from primary sequences proved to be an encouraging approach for obtaining consistent classification results. We anticipate that by increasing the database size, we can further improve feature extraction and correct classification.  相似文献   

20.
PDZ domains mediate protein-protein interactions at specialized subcellular sites, such as epithelial cell tight junctions and neuronal post-synaptic densities. Because most PDZ domains bind extreme carboxyl-terminal sequences, the phage display method has not been amenable to the study of PDZ domain binding specificities. For the first time, we demonstrate the functional display of a peptide library fused to the carboxyl terminus of the M13 major coat protein. We used this library to analyze carboxyl-terminal peptide recognition by two PDZ domains. For each PDZ domain, the library provided specific ligands with sub-micromolar binding affinities. Synthetic peptides and homology modeling were used to dissect and rationalize the binding interactions. Our results establish carboxyl-terminal phage display as a powerful new method for mapping PDZ domain binding specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号