首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Annual seasonal influenza outbreaks are associated with high morbidity and mortality.

Objective

To index and document evolutionary changes among influenza A H1N1 and H3N2 viruses isolated from Thailand during 2006–2009, using complete genome sequences.

Methods

Nasopharyngeal aspirates were collected from patients diagnosed with respiratory illness in Thailand during 2006–2009. All samples were screened for Influenza A virus. A total of 13 H1N1 and 21 H3N2 were confirmed and whole genome sequenced for the evolutionary analysis using standard phylogenetic approaches.

Results

Phylogenetic analysis of HA revealed a clear diversification of seasonal from vaccine strain lineages. H3N2 seasonal clusters were closely related to the WHO recommended vaccine strains in each season. Most H1N1 isolates could be differentiated into 3 lineages. The A/Brisbane/59/2007 lineage, a vaccine strain for H1N1 since 2008, is closely related with the H1N1 subtypes circulating in 2009. HA sequences were conserved at the receptor-binding site. Amino acid variations in the antigenic site resulted in a possible N-linked glycosylation motif. Recent H3N2 isolates had higher genetic variations compared to H1N1 isolates. Most substitutions in the NP protein were clustered in the T-cell recognition domains.

Conclusion

In this study we performed evolutionary genetic analysis of influenza A viruses in Thailand between 2006–2009. Although the current vaccine strain is efficient for controlling the circulating outbreak subtypes, surveillance is necessary to provide unambiguous information on emergent viruses. In summary, the findings of this study contribute the understanding of evolution in influenza A viruses in humans and is useful for routine surveillance and vaccine strain selection.  相似文献   

2.

Background

We describe the temporal variation in viral agents detected in influenza like illness (ILI) patients before and after the appearance of the ongoing pandemic influenza A (H1N1) (pH1N1) in Peru between 4-January and 13-July 2009.

Methods

At the health centers, one oropharyngeal swab was obtained for viral isolation. From epidemiological week (EW) 1 to 18, at the US Naval Medical Research Center Detachment (NMRCD) in Lima, the specimens were inoculated into four cell lines for virus isolation. In addition, from EW 19 to 28, the specimens were also analyzed by real time-polymerase-chain-reaction (rRT-PCR).

Results

We enrolled 2,872 patients: 1,422 cases before the appearance of the pH1N1 virus, and 1,450 during the pandemic. Non-pH1N1 influenza A virus was the predominant viral strain circulating in Peru through (EW) 18, representing 57.8% of the confirmed cases; however, this predominance shifted to pH1N1 (51.5%) from EW 19–28. During this study period, most of pH1N1 cases were diagnosed in the capital city (Lima) followed by other cities including Cusco and Trujillo. In contrast, novel influenza cases were essentially absent in the tropical rain forest (jungle) cities during our study period. The city of Iquitos (Jungle) had the highest number of influenza B cases and only one pH1N1 case.

Conclusions

The viral distribution in Peru changed upon the introduction of the pH1N1 virus compared to previous months. Although influenza A viruses continue to be the predominant viral pathogen, the pH1N1 virus predominated over the other influenza A viruses.  相似文献   

3.

Background

Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses.

Methodology/Principal Findings

To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype) with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7) was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses.

Conclusions/Significance

Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones) of swine.  相似文献   

4.
5.
6.

Background

The clinical consequences of co-infection with two or more respiratory viruses are poorly understood. We sought to determine if co-infection with pandemic 2009–2010 influenza A H1N1 (pH1N1) and another respiratory virus was associated with worse clinical outcomes.

Methods

A retrospective cohort study was performed of all hospitalized patients with a positive respiratory viral panel (RVP) for two or more viruses within 72 hours of admission at our institution from October 2009 to December 2009. We compared patients infected with one respiratory virus to those with respiratory viral co-infection.

Results

We identified 617 inpatients with a positive RVP sample with a single virus and 49 inpatients with a positive RVP sample for two viruses (i.e. co-infection). Co-infected patients were significantly younger, more often had fever/chills, tachypnea, and they more often demonstrated interstitial opacities suggestive of viral pneumonia on the presenting chest radiograph (OR 7.5, 95% CI 3.4–16.5). The likelihood of death, length of stay, and requirement for intensive care unit level of care were similar in both groups, but patients with any respiratory virus co-infection were more likely to experience complications, particularly treatment for a secondary bacterial pneumonia (OR 6.8, 95% CI 3.3–14.2). Patients co-infected with pH1N1 and another respiratory virus were more likely to present with chest radiograph changes suggestive of a viral pneumonia, compared to mono-infection with pH1N1 (OR 16.9, 95% CI 4.5–62.7). By logistic regression using mono-infection with non-PH1N1 viruses as the reference group, co-infection with pH1N1 was the strongest independent predictor of treatment for a secondary bacterial pneumonia (OR 17.8, 95% CI 6.7–47.1).

Conclusion

Patients with viral co-infection, particularly with pH1N1, were more likely to have chest radiograph features compatible with a viral pneumonia and complications during their hospital course, particularly treatment for secondary bacterial pneumonia. Despite this, co-infection was not associated with ICU admission.  相似文献   

7.

Background

Studies that aimed at comparing the clinical presentation of influenza patients across virus types and subtypes/lineages found divergent results, but this was never investigated using data collected over several years in a countrywide, primary care practitioners-based influenza surveillance system.

Methods

The IBVD (Influenza B in Vircases Database) study collected information on signs and symptoms at disease onset from laboratory-confirmed influenza patients of any age who consulted a sentinel practitioner in France. We compared the clinical presentation of influenza patients across age groups (0–4, 5–14, 15–64 and 65+ years), virus types (A, B) and subtypes/lineages (A(H3N2), pandemic A(H1N1), B Victoria, B Yamagata).

Results

Overall, 14,423 influenza cases (23.9% of which were influenza B) were included between 2003–2004 and 2012–2013. Influenza A and B accounted for over 50% of total influenza cases during eight and two seasons, respectively. There were minor differences in the distribution of signs and symptoms across influenza virus types and subtypes/lineages. Compared to patients aged 0–4 years, those aged 5–14 years were more likely to have been infected with type B viruses (OR 2.15, 95% CI 1.87–2.47) while those aged 15–64 years were less likely (OR 0.83, 95% CI 0.73–0.96). Males and influenza patients diagnosed during the epidemic period were less likely to be infected with type B viruses.

Conclusions

Despite differences in age distribution, the clinical illness produced by the different influenza virus types and subtypes is indistinguishable among patients that consult a general practitioner for acute respiratory infections.  相似文献   

8.

Background

Human-like H3N2 influenza viruses have repeatedly been transmitted to domestic pigs in different regions of the world, but it is still uncertain whether any of these variants could become established in pig populations. The fact that different subtypes of influenza viruses have been detected in pigs makes them an ideal candidate for the genesis of a possible reassortant virus with both human and avian origins. However, the determination of whether pigs can act as a “mixing vessel” for a possible future pandemic virus is still pending an answer. This prompted us to gather the epidemiological information and investigate the genetic evolution of swine influenza viruses in Jilin, China.

Methods

Nasopharyngeal swabs were collected from pigs with respiratory illness in Jilin province, China from July 2007 to October 2008. All samples were screened for influenza A viruses. Three H3N2 swine influenza virus isolates were analyzed genetically and phylogenetically.

Results

Influenza surveillance of pigs in Jilin province, China revealed that H3N2 influenza viruses were regularly detected from domestic pigs during 2007 to 2008. Phylogenetic analysis revealed that two distinguishable groups of H3N2 influenza viruses were present in pigs: the wholly contemporary human-like H3N2 viruses (represented by the Moscow/10/99-like sublineage) and double-reassortant viruses containing genes from contemporary human H3N2 viruses and avian H5 viruses, both co-circulating in pig populations.

Conclusions

The present study reports for the first time the coexistence of wholly human-like H3N2 viruses and double-reassortant viruses that have emerged in pigs in Jilin, China. It provides updated information on the role of pigs in interspecies transmission and genetic reassortment of influenza viruses.  相似文献   

9.
Deng YM  Caldwell N  Barr IG 《PloS one》2011,6(8):e23400

Background

Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance.

Methodology/Principal Findings

A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses.

Conclusions/Significance

In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.  相似文献   

10.

Background

The urgent medical need for innovative approaches to control influenza is emphasized by the widespread resistance of circulating subtype H1N1 viruses to the leading antiviral drug oseltamivir, the pandemic threat posed by the occurrences of human infections with highly pathogenic avian H5N1 viruses, and indeed the evolving swine-origin H1N1 influenza pandemic. A recently discovered class of human monoclonal antibodies with the ability to neutralize a broad spectrum of influenza viruses (including H1, H2, H5, H6 and H9 subtypes) has the potential to prevent and treat influenza in humans. Here we report the latest efficacy data for a representative antibody of this novel class.

Methodology/Principal Findings

We evaluated the prophylactic and therapeutic efficacy of the human monoclonal antibody CR6261 against lethal challenge with the highly pathogenic avian H5N1 virus in ferrets, the optimal model of human influenza infection. Survival rates, clinically relevant disease signs such as changes in body weight and temperature, virus replication in lungs and upper respiratory tract, as well as macro- and microscopic pathology were investigated. Prophylactic administration of 30 and 10 mg/kg CR6261 prior to viral challenge completely prevented mortality, weight loss and reduced the amount of infectious virus in the lungs by more than 99.9%, abolished shedding of virus in pharyngeal secretions and largely prevented H5N1-induced lung pathology. When administered therapeutically 1 day after challenge, 30 mg/kg CR6261 prevented death in all animals and blunted disease, as evidenced by decreased weight loss and temperature rise, reduced lung viral loads and shedding, and less lung damage.

Conclusions/Significance

These data demonstrate the prophylactic and therapeutic efficacy of this new class of human monoclonal antibodies in a highly stringent and clinically relevant animal model of influenza and justify clinical development of this approach as intervention for both seasonal and pandemic influenza.  相似文献   

11.

Background

Human infections with highly pathogenic H5N1 avian influenza viruses have generally been confirmed by molecular amplification or culture-based methods. Serologic surveillance has potential advantages which have not been realized because rapid and specific serologic tests to detect H5N1 infection are not widely available.

Methodology/Principal Findings

Here we describe an epitope-blocking ELISA to detect specific antibodies to H5N1 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (5F8) that binds to an epitope comprising amino acid residues 274–281 (CNTKCQTP) in the HA1 region of H5 hemagglutinin. Database search analysis of publicly available sequences revealed that this epitope is conserved in 100% of the 163 H5N1 viruses isolated from humans. The sensitivity and specificity of the epitope-blocking ELISA for H5N1 were evaluated using chicken antisera to multiple virus clades and other influenza subtypes as well as serum samples from individuals naturally infected with H5N1 or seasonal influenza viruses. The epitope-blocking ELISA results were compared to those of hemagglutinin inhibition (HI) and microneutralization assays. Antibodies to H5N1 were readily detected in immunized animals or convalescent human sera by the epitope-blocking ELISA whereas specimens with antibodies to other influenza subtypes yielded negative results. The assay showed higher sensitivity and specificity as compared to HI and microneutralization.

Conclusions/Significance

The epitope-blocking ELISA based on a unique 5F8 mAb provided highly sensitive and 100% specific detection of antibodies to H5N1 influenza viruses in human sera.  相似文献   

12.

Objective

To determine if immune phenotypes associated with immunosenescence predict risk of respiratory viral infection in elderly nursing home residents.

Methods

Residents ≥65 years from 32 nursing homes in 4 Canadian cities were enrolled in Fall 2009, 2010 and 2011, and followed for one influenza season. Following influenza vaccination, peripheral blood mononuclear cells (PBMCs) were obtained and analysed by flow cytometry for T-regs, CD4+ and CD8+ T-cell subsets (CCR7+CD45RA+, CCR7-CD45RA+ and CD28-CD57+) and CMV-reactive CD4+ and CD8+ T-cells. Nasopharyngeal swabs were obtained and tested for viruses in symptomatic residents. A Cox proportional hazards model adjusted for age, sex and frailty, determined the relationship between immune phenotypes and time to viral infection.

Results

1072 residents were enrolled; median age 86 years and 72% female. 269 swabs were obtained, 87 were positive for virus: influenza (24%), RSV (14%), coronavirus (32%), rhinovirus (17%), human metapneumovirus (9%) and parainfluenza (5%). In multivariable analysis, high T-reg% (HR 0.41, 95% CI 0.20–0.81) and high CMV-reactive CD4+ T-cell% (HR 1.69, 95% CI 1.03–2.78) were predictive of respiratory viral infection.

Conclusions

In elderly nursing home residents, high CMV-reactive CD4+ T-cells were associated with an increased risk and high T-regs were associated with a reduced risk of respiratory viral infection.  相似文献   

13.

Background

Limited information exists on the epidemiology of acute febrile respiratory illnesses in tropical South American countries such as Venezuela. The objective of the present study was to examine the epidemiology of influenza-like illness (ILI) in two hospitals in Maracay, Venezuela.

Methodology/Principal Findings

We performed a prospective surveillance study of persons with ILI who presented for care at two hospitals in Maracay, Venezuela, from October 2006 to December 2010. A respiratory specimen and clinical information were obtained from each participant. Viral isolation and identification with immunofluorescent antibodies and molecular methods were employed to detect respiratory viruses such as adenovirus, influenza A and B, parainfluenza, and respiratory sincytial virus, among others. There were 916 participants in the study (median age: 17 years; range: 1 month – 86 years). Viruses were identified in 143 (15.6%) subjects, and one participant was found to have a co-infection with more than one virus. Influenza viruses, including pandemic H1N1 2009, were the most frequently detected pathogens, accounting for 67.4% (97/144) of the viruses detected. Adenovirus (15/144), parainfluenza virus (13/144), and respiratory syncytial virus (11/144) were also important causes of ILI in this study. Pandemic H1N1 2009 virus became the most commonly isolated influenza virus during its initial appearance in 2009. Two waves of the pandemic were observed: the first which peaked in August 2009 and the second - higher than the preceding - that peaked in October 2009. In 2010, influenza A/H3N2 re-emerged as the most predominant respiratory virus detected.

Conclusions/Significance

Influenza viruses were the most commonly detected viral organisms among patients with acute febrile respiratory illnesses presenting at two hospitals in Maracay, Venezuela. Pandemic H1N1 2009 influenza virus did not completely replace other circulating influenza viruses during its initial appearance in 2009. Seasonal influenza A/H3N2 was the most common influenza virus in the post-pandemic phase.  相似文献   

14.

Background

Influenza neuraminidase (NA) is an important surface glycoprotein and plays a vital role in viral replication and drug development. The NA is found in influenza A and B viruses, with nine subtypes classified in influenza A. The complete knowledge of influenza NA evolutionary history and phylodynamics, although critical for the prevention and control of influenza epidemics and pandemics, remains lacking.

Methodology/Principal findings

Evolutionary and phylogenetic analyses of influenza NA sequences using Maximum Likelihood and Bayesian MCMC methods demonstrated that the divergence of influenza viruses into types A and B occurred earlier than the divergence of influenza A NA subtypes. Twenty-three lineages were identified within influenza A, two lineages were classified within influenza B, and most lineages were specific to host, subtype or geographical location. Interestingly, evolutionary rates vary not only among lineages but also among branches within lineages. The estimated tMRCAs of influenza lineages suggest that the viruses of different lineages emerge several months or even years before their initial detection. The d N /d S ratios ranged from 0.062 to 0.313 for influenza A lineages, and 0.257 to 0.259 for influenza B lineages. Structural analyses revealed that all positively selected sites are at the surface of the NA protein, with a number of sites found to be important for host antibody and drug binding.

Conclusions/Significance

The divergence into influenza type A and B from a putative ancestral NA was followed by the divergence of type A into nine NA subtypes, of which 23 lineages subsequently diverged. This study provides a better understanding of influenza NA lineages and their evolutionary dynamics, which may facilitate early detection of newly emerging influenza viruses and thus improve influenza surveillance.  相似文献   

15.

Background

The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, “universal” vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd) expressing the conserved influenza virus antigens matrix 2 and nucleoprotein.

Methodology/Principal Findings

In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals.

Conclusion/Significance

Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic.  相似文献   

16.

Background

There is limited information about the epidemiology of influenza in Africa. We describe the epidemiology and seasonality of influenza in Morocco from 1996 to 2009 with particular emphasis on the 2007–2008 and 2008–2009 influenza seasons. Successes and challenges of the enhanced surveillance system introduced in 2007 are also discussed.

Methods

Virologic sentinel surveillance for influenza virus was initiated in Morocco in 1996 using a network of private practitioners that collected oro-pharyngeal and naso-pharyngeal swabs from outpatients presenting with influenza-like-illness (ILI). The surveillance network expanded over the years to include inpatients presenting with severe acute respiratory illness (SARI) at hospitals and syndromic surveillance for ILI and acute respiratory infection (ARI). Respiratory samples and structured questionnaires were collected from eligible patients, and samples were tested by immunofluorescence assays and by viral isolation for influenza viruses.

Results

We obtained a total of 6465 respiratory specimens during 1996 to 2009, of which, 3102 were collected during 2007–2009. Of those, 2249 (72%) were from patients with ILI, and 853 (27%) were from patients with SARI. Among the 3,102 patients, 98 (3%) had laboratory-confirmed influenza, of whom, 85 (87%) had ILI and 13 (13%) had SARI. Among ILI patients, the highest proportion of laboratory-confirmed influenza occurred in children less than 5 years of age (3/169; 2% during 2007–2008 and 23/271; 9% during 2008–2009) and patients 25–59 years of age (8/440; 2% during 2007–2009 and 21/483; 4% during 2008–2009). All SARI patients with influenza were less than 14 years of age. During all surveillance years, influenza virus circulation was seasonal with peak circulation during the winter months of October through April.

Conclusion

Influenza results in both mild and severe respiratory infections in Morocco, and accounted for a large proportion of all hospitalizations for severe respiratory illness among children 5 years of age and younger.  相似文献   

17.

Background

Since its appearance in 2009, the pandemic influenza A(H1N1) virus circulated worldwide causing several severe infections.

Methods

Respiratory samples from patients with 2009 influenza A(H1N1) and acute respiratory distress attending 24 intensive care units (ICUs) as well as from patients with lower respiratory tract infections not requiring ICU admission and community upper respiratory tract infections in the Lombardy region (10 million inhabitants) of Italy during the 2010–2011 winter-spring season, were analyzed.

Results

In patients with severe ILI, the viral load was higher in bronchoalveolar lavage (BAL) with respect to nasal swab (NS), (p<0.001) suggesting a higher virus replication in the lower respiratory tract. Four distinct virus clusters (referred to as cluster A to D) circulated simultaneously. Most (72.7%, n = 48) of the 66 patients infected with viruses belonging to cluster A had a severe (n = 26) or moderate ILI (n = 22). Amino acid mutations (V26I, I116M, A186T, D187Y, D222G/N, M257I, S263F, I286L/M, and N473D) were observed only in patients with severe ILI. D222G/N variants were detected exclusively in BAL samples.

Conclusions

Multiple virus clusters co-circulated during the 2010–2011 winter-spring season. Severe or moderate ILI were associated with specific 2009 influenza A(H1N1) variants, which replicated preferentially in the lower respiratory tract.  相似文献   

18.

Background

The weekly proportion of laboratory tests that are positive for influenza is used in public health surveillance systems to identify periods of influenza activity. We aimed to estimate the sensitivity of influenza testing in Canada based on results of a national respiratory virus surveillance system.

Methods and Findings

The weekly number of influenza-negative tests from 1999 to 2006 was modelled as a function of laboratory-confirmed positive tests for influenza, respiratory syncytial virus (RSV), adenovirus and parainfluenza viruses, seasonality, and trend using Poisson regression. Sensitivity was calculated as the number of influenza positive tests divided by the number of influenza positive tests plus the model-estimated number of false negative tests. The sensitivity of influenza testing was estimated to be 33% (95%CI 32–34%), varying from 30–40% depending on the season and region.

Conclusions

The estimated sensitivity of influenza tests reported to this national laboratory surveillance system is considerably less than reported test characteristics for most laboratory tests. A number of factors may explain this difference, including sample quality and specimen procurement issues as well as test characteristics. Improved diagnosis would permit better estimation of the burden of influenza.  相似文献   

19.

Background

There is some evidence that annual vaccination of trivalent inactivated influenza vaccine (TIV) may lead to reduced vaccine immunogenicity but evidence is lacking on whether vaccine efficacy is affected by prior vaccination history. The efficacy of one dose of TIV in children 6–8 y of age against influenza B is uncertain. We examined whether immunogenicity and efficacy of influenza vaccination in school-age children varied by age and past vaccination history.

Methods and Findings

We conducted a randomized controlled trial of 2009–10 TIV. Influenza vaccination history in the two preceding years was recorded. Immunogenicity was assessed by comparison of HI titers before and one month after receipt of TIV/placebo. Subjects were followed up for 11 months with symptom diaries, and respiratory specimens were collected during acute respiratory illnesses to permit confirmation of influenza virus infections. We found that previous vaccination was associated with reduced antibody responses to TIV against seasonal A(H1N1) and A(H3N2) particularly in children 9–17 y of age, but increased antibody responses to the same lineage of influenza B virus in children 6–8 y of age. Serological responses to the influenza A vaccine viruses were high regardless of vaccination history. One dose of TIV appeared to be efficacious against confirmed influenza B in children 6–8 y of age regardless of vaccination history.

Conclusions

Prior vaccination was associated with lower antibody titer rises following vaccination against seasonal influenza A vaccine viruses, but higher responses to influenza B among individuals primed with viruses from the same lineage in preceding years. In a year in which influenza B virus predominated, no impact of prior vaccination history was observed on vaccine efficacy against influenza B. The strains that circulated in the year of study did not allow us to study the effect of prior vaccination on vaccine efficacy against influenza A.  相似文献   

20.

Background

The rapidly expanding availability of de novo sequencing technologies can greatly facilitate efforts to monitor the relatively high mutation rates of influenza A viruses and the detection of quasispecies. Both the mutation rates and the lineages of influenza A viruses are likely to play an important role in the natural history of these viruses and the emergence of phenotypically and antigenically distinct strains.

Methodology and Principal Findings

We evaluated quasispecies and mixed infections by de novo sequencing the whole genomes of 10 virus isolates, including eight avian influenza viruses grown in embryonated chicken eggs (six waterfowl isolates - five H3N2 and one H4N6; an H7N3 turkey isolate; and a bald eagle isolate with H1N1/H2N1 mixed infection), and two tissue cultured H3N2 swine influenza viruses. Two waterfowl cloacal swabs were included in the analysis. Full-length sequences of all segments were obtained with 20 to 787-X coverage for the ten viruses and one cloacal swab. The second cloacal swab yielded 15 influenza reads of ∼230 bases, sufficient for bioinformatic inference of mixed infections or quasispecies. Genomic subpopulations or quasispecies of viruses were identified in four egg grown avian influenza isolates and one cell cultured swine virus. A bald eagle isolate and the second cloacal swab showed evidence of mixed infections with two (H1 and H2) and three (H1, H3, and H4) HA subtypes, respectively. Multiple sequence differences were identified between cloacal swab and the virus recovered using embryonated chicken eggs.

Conclusions

We describe a new approach to comprehensively identify mixed infections and quasispecies in low passage influenza A isolates and cloacal swabs and add to the understanding of the ecology of influenza A virus populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号