首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We used an approach for detecting genotype x environment interactions to detect and characterize genotype x age interaction in longitudinal measures of three well known cardiovascular risk factors: total plasma cholesterol (TC), systolic blood pressure (SBP), and body weight (Wgt). Our objectives were to determine if the same gene or suite of genes influences quantitative variation in each of these phenotypes in the 4th and 6th decades of life, to assess the impact of additive gene effects in these two decades, and to evaluate the stability of pleiotropic relationships among these phenotypes. Using the Framingham Heart Study data, we constructed two cross-sectional samples comprising individuals on whom these phenotypes were measured at ages 30-39 years (Original Cohort: exam 1, Offspring Cohort: exam 2) and at ages 50-59 years (Original Cohort: exam 11, Offspring Cohort: exam 5). We also constructed a longitudinal sample from the cross-sectional sample members for whom measures on these traits were available at both ages (i.e., 4th and 6th decades of life). Patterns of pleiotropy, inferred from genetic correlations between traits, differ between the two age classes. Further, additive genetic variance in SBP during the 4th decade of life is attributable to a different gene or suite of genes than during the 6th. The magnitude of the effect increases for SBP. Variation in TC and Wgt appear to be influenced by the same gene or genes in both decades. The magnitude of the effect is stable for TC, but increases dramatically with age for Wgt.  相似文献   

3.
Epigenetic mechanisms can mediate gene-environment interactions relevant for complex disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to environmental stressors, such as hypoxia, and harbors the functional SNP rs6265 (Val66Met), which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive manner, depending on rs6265 genotype: in ValVal individuals increased methylation is associated with exposure to hOCs and impaired working memory (WM) accuracy, while the opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an analogous opposite direction in the 2 genotypes. Consistently, rs6265 methylation has a different association with schizophrenia risk in ValVals and ValMets. The relationships of methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with genotype to bridge early environmental exposures to adult phenotypes, relevant for schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant for human diseases may have beneficial implications for the understanding of how genes are actually translated into phenotypes.  相似文献   

4.
5.
Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear), allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role.  相似文献   

6.
Systematic studies have revealed that single gene deletions often display little phenotypic effects under laboratory conditions and that in many cases gene dispensability depends on the experimental conditions. To elucidate the environmental dependency of genes, we analyzed the effects of gene deletions by Phenotype MicroArray? (PM), a system for quantitative screening of thousands of phenotypes in a high-throughput manner. Here, we proposed a new statistical approach to minimize error inherent in measurements of low respiration rates and find which mutants showed significant phenotypic changes in comparison to the wild-type. We show analyzing results from comprehensive PM assays of 298 single-gene knockout mutants in the Keio collection and two additional mutants under 1,920 different conditions. We focused on isozymes of these genes as simple duplications and analyzed correlations between phenotype changes and protein expression levels. Our results revealed divergence of the environmental dependency of the gene among the knockout genes and have also given some insights into possibilities of alternative pathways and availabilities of information on protein synthesis patterns to classify or predict functions of target genes from systematic phenotype screening.  相似文献   

7.
To explore gene-environment interactions, based on temporal gene expression information, we analyzed gene and treatment information intensively and inferred interaction networks accordingly. The main idea is that gene expression reflects the response of genes to environmental factors, assuming that variations of gene expression occur under different conditions. Then we classified experimental conditions into several subgroups based on the similarity of temporal gene expression profiles. This procedure is useful because it allows us to combine diverse gene expression data as they become available, and, especially, allowing us to lay the regulatory relationships on a concrete biological basis. By estimating the activation points, we can visualize the gene behavior, and obtain a consensus gene activation order, and hence describe conditional regulatory relationships. The estimation of activation points and building of synthetic genetic networks may result in important new insights in the ongoing endeavor to understand the complex network of gene regulation.  相似文献   

8.
9.
The advent of cost‐effective genotyping and sequencing methods have recently made it possible to ask questions that address the genetic basis of phenotypic diversity and how natural variants interact with the environment. We developed Camelot (CAusal Modelling with Expression Linkage for cOmplex Traits), a statistical method that integrates genotype, gene expression and phenotype data to automatically build models that both predict complex quantitative phenotypes and identify genes that actively influence these traits. Camelot integrates genotype and gene expression data, both generated under a reference condition, to predict the response to entirely different conditions. We systematically applied our algorithm to data generated from a collection of yeast segregants, using genotype and gene expression data generated under drug‐free conditions to predict the response to 94 drugs and experimentally confirmed 14 novel gene–drug interactions. Our approach is robust, applicable to other phenotypes and species, and has potential for applications in personalized medicine, for example, in predicting how an individual will respond to a previously unseen drug.  相似文献   

10.
cis- and trans-acting factors affect gene expression and responses to environmental conditions. However, for most plant systems, we lack a comprehensive map of these factors and their interaction with environmental variation. Here, we examined allele-specific expression (ASE) in an F1 hybrid to study how alleles from two Arabidopsis thaliana accessions affect gene expression. To investigate the effect of the environment, we used drought stress and developed a variance component model to estimate the combined genetic contributions of cis- and trans-regulatory polymorphisms, environmental factors, and their interactions. We quantified ASE for 11,003 genes, identifying 3318 genes with consistent ASE in control and stress conditions, demonstrating that cis-acting genetic effects are essentially robust to changes in the environment. Moreover, we found 1618 genes with genotype x environment (GxE) interactions, mostly cis x E interactions with magnitude changes in ASE. We found fewer trans x E interactions, but these effects were relatively less robust across conditions, showing more changes in the direction of the effect between environments; this confirms that trans-regulation plays an important role in the response to environmental conditions. Our data provide a detailed map of cis- and trans-regulation and GxE interactions in A. thaliana, laying the ground for mechanistic investigations and studies in other plants and environments.  相似文献   

11.
12.
Stress responses play an important role in shaping species distributions and robustness to climate change. We investigated how stress responses alter the contribution of additive genetic variation to gene expression during development of the purple sea urchin, Strongylocentrotus purpuratus, under increased temperatures that model realistic climate change scenarios. We first measured gene expression responses in the embryos by RNA‐seq to characterize molecular signatures of mild, chronic temperature stress in an unbiased manner. We found that an increase from 12 to 18 °C caused widespread alterations in gene expression including in genes involved in protein folding, RNA processing and development. To understand the quantitative genetic architecture of this response, we then focused on a well‐characterized gene network involved in endomesoderm and ectoderm specification. Using a breeding design with wild‐caught individuals, we measured genetic and gene–environment interaction effects on 72 genes within this network. We found genetic or maternal effects in 33 of these genes and that the genetic effects were correlated in the network. Fourteen network genes also responded to higher temperatures, but we found no significant genotype–environment interactions in any of the genes. This absence may be owing to an effective buffering of the temperature perturbations within the network. In support of this hypothesis, perturbations to regulatory genes did not affect the expression of the genes that they regulate. Together, these results provide novel insights into the relationship between environmental change and developmental evolution and suggest that climate change may not expose large amounts of cryptic genetic variation to selection in this species.  相似文献   

13.
Wang GZ  Lercher MJ 《PloS one》2011,6(4):e18288
Interacting proteins may often experience similar selection pressures. Thus, we may expect that neighbouring proteins in biological interaction networks evolve at similar rates. This has been previously shown for protein-protein interaction networks. Similarly, we find correlated rates of evolution of neighbours in networks based on co-expression, metabolism, and synthetic lethal genetic interactions. While the correlations are statistically significant, their magnitude is small, with network effects explaining only between 2% and 7% of the variation. The strongest known predictor of the rate of protein evolution remains expression level. We confirmed the previous observation that similar expression levels of neighbours indeed explain their similar evolution rates in protein-protein networks, and showed that the same is true for metabolic networks. In co-expression and synthetic lethal genetic interaction networks, however, neighbouring genes still show somewhat similar evolutionary rates even after simultaneously controlling for expression level, gene essentiality and gene length. Thus, similar expression levels and related functions (as inferred from co-expression and synthetic lethal interactions) seem to explain correlated evolutionary rates of network neighbours across all currently available types of biological networks.  相似文献   

14.
Organisms can have divergent paths of development leading to alternative phenotypes, or morphs. The choice of developmental path may be set by environmental cues, the individual's genotype, or a combination of the two. Using individual-based simulation and analytical investigation, we explore the idea that from the viewpoint of a developmental switch, genetic morph determination can sometimes be regarded as adaptive developmental plasticity. We compare the possibilities for the evolution of environmental and genetic morph determination and combinations of the two in situations with spatial variation in conditions. We find that the accuracy of environmental cues in predicting coming selective conditions is important for environmental morph determination, in accordance with previous results, and that genetic morph determination is favored in a similar way by the accuracy of genetic cues, in the form of selectively maintained gene frequency differences between local populations. Restricted gene flow and strong selection acting on the phenotypic alternatives produce clearer gene frequency differences and lead to greater accuracy of genetic cues. For combined environmental and genetic morph determination, we show that the developmental machinery can evolve toward efficiently combining information in environmental and genetic cues for the purpose of predicting coming selective conditions.  相似文献   

15.
16.
Most common diseases are complex, involving multiple genetic and environmental factors and their interactions. In the past decade, genome-wide association studies (GWAS) have successfully identified thousands of genetic variants underlying susceptibility to complex diseases. However, the results from these studies often do not provide evidence on how the variants affect downstream pathways and lead to the disease. Therefore, in the post-GWAS era the greatest challenge lies in combining GWAS findings with additional molecular data to functionally characterize the associations. The advances in various ~omics techniques have made it possible to investigate the effect of risk variants on intermediate molecular levels, such as gene expression, methylation, protein abundance or metabolite levels. As disease aetiology is complex, no single molecular analysis is expected to fully unravel the disease mechanism. Multiple molecular levels can interact and also show plasticity in different physiological conditions, cell types and disease stages. There is therefore a great need for new integrative approaches that can combine data from different molecular levels and can help construct the causal inference from genotype to phenotype. Systems genetics is such an approach; it is used to study genetic effects within the larger scope of systems biology by integrating genotype information with various ~omics datasets as well as with environmental and physiological variables. In this review, we describe this approach and discuss how it can help us unravel the molecular mechanisms through which genetic variation causes disease. This article is part of a Special Issue entitled: From Genome to Function.  相似文献   

17.
18.
19.
Indirect genetic effects (IGEs) occur when the phenotype of an individual, and possibly its fitness, depends, at least in part, on the genes of its social partners. The effective result is that environmental sources of phenotypic variance can themselves evolve. Simple models have shown that IGEs can alter the rate and direction of evolution for traits involved in interactions. Here we expand the applicability of the theory of IGEs to evolution in metapopulations by including nonlinear interactions between individuals and population genetic structure. Although population subdivision alone generates some dramatic and nonintuitive evolutionary dynamics for interacting phenotypes, the combination of nonlinear interactions with subdivision reveals an even greater importance of IGEs. The presence of genetic structure links the evolution of interacting phenotypes and the traits that influence their expression ("effector traits") even in the absence of genetic correlations. When nonlinear social effects occur in subdivided populations, evolutionary response is altered and can even oppose the direction expected due to direct selection. Because population genetic structure allows for multilevel selection, we also investigate the role of IGEs in determining the response to individual and group selection. We find that nonlinear social effects can cause interference between levels of selection even when they act in the same direction. In some cases, interference can be so extreme that the actual evolutionary response to multilevel selection is opposite in direction to that predicted by summing selection at each level. This theoretical result confirms empirical data that show higher levels of selection cannot be ignored even when selection acts in the same direction at all levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号