首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyanionic candidate microbicides, including cellulose sulfate, carrageenan, PRO 2000, were proven ineffective in preventing HIV-1 transmission and even cellulose sulfate showed increased risk of HIV acquisition in the Phase III efficacy trials. Semen plays critical roles in HIV-1 sexual transmission. Specifically, amyloid fibrils formed by fragments of prostatic acidic phosphatase (PAP) in semen termed semen-derived enhancer of virus infection (SEVI) could drastically enhance HIV-1 infection. Here we investigated the interaction between polyanions and PAP248-286, a prototype peptide of SEVI, to understand the possible cause of polyanionic candidate microbicides to fail in clinical trials. We found anionic polymers could efficiently promote SEVI fibril formation, most likely mediated by the natural electrostatic interaction between polyanions and PAP248-286, as revealed by acid native PAGE and Western blot. The overall anti-HIV-1 activity of polyanions in the presence or absence of PAP248-286 or semen was evaluated. In the viral infection assay, the supernatants of polyanions/PAP248-286 or polyanions/semen mixtures containing the free, unbound polyanionic molecules showed a general reduction in antiviral efficacy, while the pellets containing amyloid fibrils formed by the polyanion-bound PAP248-286 showed aggravated enhancement of viral infection. Collectively, from the point of drug-host protein interaction, our study revealed that polyanions facilitate SEVI fibril formation to promote HIV-1 infection, thus highlighting a molecular mechanism underlying the failure of polyanions in clinical trials and the importance of drug-semen interaction in evaluating the anti-HIV-1 efficacy of candidate microbicides.  相似文献   

2.
Amyloid fibrils contained in semen, known as SEVI, or semen-derived enhancer of viral infection, have been shown to increase the infectivity of HIV dramatically. However, previous work with these fibrils has suggested that extensive time and nonphysiologic levels of agitation are necessary to induce amyloid formation from the precursor peptide (a proteolytic cleavage product of prostatic acid phosphatase, PAP(248-286)). Here, we show that fibril formation by PAP(248-286) is accelerated dramatically in the presence of seminal plasma (SP) and that agitation is not required for fibrillization in this setting. Analysis of the effects of specific SP components on fibril formation by PAP(248-286) revealed that this effect is primarily due to the anionic buffer components of SP (notably inorganic phosphate and sodium bicarbonate). Divalent cations present in SP had little effect on the kinetics of fibril formation, but physiologic levels of Zn(2+) strongly protected SEVI fibrils from degradation by seminal proteases. Taken together, these data suggest that in the in vivo environment, PAP(248-286) is likely to form fibrils efficiently, thus providing an explanation for the presence of SEVI in human semen.  相似文献   

3.
Semen-derived enhancer of viral infection (SEVI), an amyloid fibril formed from a cationic peptide fragment of prostatic acidic phosphatase (PAP), dramatically enhances the infectivity of human immunodeficiency virus type 1 (HIV-1). Insoluble, sedimentable fibrils contribute to SEVI-mediated enhancement of virus infection. However, the SEVI-forming PAP(248–286) peptide is able to produce infection-enhancing structures much more quickly than it forms amyloid fibrils. This suggests that soluble supramolecular assemblies may enhance HIV-1 infection. To address this question, non-SEVI amyloid-like fibrils were derived from general amphipathic peptides of sequence Ac-Kn(XKXE)2-NH2. These cationic peptides efficiently self-assembled to form soluble, fibril-like structures that were, in some cases, able to enhance HIV-1 infection even more efficiently than SEVI. Experiments were also performed to determine whether agents that efficiently shield the charged surface of SEVI fibrils block SEVI-mediated infection-enhancement. To do this, we generated self-assembling anionic peptides of sequence Ac-En(XKXE)2-NH2. One of these peptides completely abrogated SEVI-mediated enhancement of HIV-1 infection, without altering HIV-1 infectivity in the absence of SEVI. Collectively, these data suggest that soluble SEVI assemblies may mediate infection-enhancement, and that anionic peptide supramolecular assemblies have the potential to act as anti-SEVI microbicides.  相似文献   

4.
Mucosal surfaces of the vagina are the portals for heterosexual transmission of HIV-1 and therefore play a fundamental role in the pathogenesis of primary infection. In the search for direct biological evidence for the role of human vaginal fluid in innate host defense, we characterized the anti-HIV-1 function of cationic polypeptides within minimally manipulated vaginal fluid. In the current study we revealed that vaginal fluid confers intrinsic anti-HIV-1 properties against both X4 and R5 strains of HIV-1 and could protect against HIV-1 infection and reduce proviral genome integration in organotypic cultures of human cervicovaginal tissue. The majority of this activity was contained in the cationic polypeptide fraction, and the depletion of cationic polypeptides using a selective cation exchange resin ablated most of the intrinsic activity against HIV-1. By adding the cationic polypeptide fraction to depleted vaginal fluid, we were able to restore activity against HIV-1. Using a proteomic approach, we identified 18 cationic polypeptides within vaginal fluid, nearly all of which are either known antimicrobials or have other purported roles in host defense. Interestingly, physiologic concentrations of 13 of the cationic polypeptides were not active alone against HIV-1, yet in concert they partially restored the anti-HIV-1 activity of cation-depleted vaginal fluid. These results suggest that synergism between cationic polypeptides is complex, and full anti-HIV-1 activity probably involves the aggregate of the cationic peptides and proteins in vaginal fluid.  相似文献   

5.
Semen-derived amyloid fibrils drastically enhance HIV infection   总被引:8,自引:0,他引:8  
Sexual intercourse is the major route of HIV transmission. To identify endogenous factors that affect the efficiency of sexual viral transmission, we screened a complex peptide/protein library derived from human semen. We show that naturally occurring fragments of the abundant semen marker prostatic acidic phosphatase (PAP) form amyloid fibrils. These fibrils, termed Semen-derived Enhancer of Virus Infection (SEVI), capture HIV virions and promote their attachment to target cells, thereby enhancing the infectious virus titer by several orders of magnitude. Physiological concentrations of SEVI amplified HIV infection of T cells, macrophages, ex vivo human tonsillar tissues, and transgenic rats in vivo, as well as trans-HIV infection of T cells by dendritic or epithelial cells. Amyloidogenic PAP fragments are abundant in seminal fluid and boost semen-mediated enhancement of HIV infection. Thus, they may play an important role in sexual transmission of HIV and could represent new targets for its prevention.  相似文献   

6.
Semen-derived enhancer of viral infection (SEVI) is the term given to the amyloid fibrils formed by a 39-amino acid fragment (PAP248–286) of prostatic acidic phosphatase (PAP) found in human semen. SEVI enhances human immunodeficiency virus (HIV) infectivity by four to five orders of magnitude (Münch et al., 2007). Here, we show by various biophysical techniques including Thioflavin T fluorescence, circular dichroism spectroscopy and transmission electron microscopy that fragments encompassing the central region of SEVI, i.e. PAP248–271 and PAP257–267, form fibrils of similar morphology to SEVI. Our results show that the central region, residues PAP267–271, is crucially important in promoting SEVI fibril formation. Furthermore, SEVI and fibrillar forms of these peptide fragments are toxic to neuronal pheochromocytoma 12 cells but not to epithelial colon carcinoma cells. These findings imply that although SEVI assists in the attachment of HIV-1 to immune cells, it may not facilitate HIV entry by damaging the epithelial cell layer that presents a barrier to the HIV.  相似文献   

7.
精液源性病毒增强因子(Semen-derived enhancer of viral infection,SEVI)是前列腺酸性磷酸酶(Prostatic acidphosphatase,PAP)位于PAP248-286的多肽片段,可增强人免疫缺陷病毒(Human immunodeficiency virus,HIV)的感染性。SEVI促进HIV感染的作用机制包括:①富含阳离子氨基酸残基的SEVI能通过静电作用降低HIV病毒颗粒与靶细胞之间的静电排斥;②SEVI在人体液中呈无序状态,利于病毒与靶细胞膜相互作用;③SEVI直接捕获HIV颗粒,提高病毒在靶细胞表面沉降速度,促进病毒与靶细胞的吸附和融合。目前已发现能抑制SEVI活性的物质包括:绿茶来源的EGCG(没食子儿茶素没食子酸酯)、氨基喹啉类小分子化合物Surfen、ThT类似物BTA-EG6等,能通过阻断HIV与SEVI结合或阻止其淀粉样纤维的形成,降低SEVI的病毒感染增强作用。研究SEVI的生物学特性及作用机制对防治HIV感染具有较为重要的指导意义。  相似文献   

8.
Human semen contains peptides capable of forming amyloid fibrils termed semen-derived enhancer of viral infection (SEVI) that can greatly increase human immunodeficiency virus (HIV) infection. While SEVI appears to enhance virion attachment to target cells, its underlying mechanism of action is unknown. We now demonstrate that the intrinsic positive charges of SEVI (pI = 10.21) facilitate virion attachment to and fusion with target cells. A mutant form of SEVI in which lysines and arginines are replaced with alanines retains the ability to form amyloid fibrils but is defective in binding virions and enhancing infection. In addition, the interaction of wild-type SEVI with virions and the ability of these fibrils to increase infection are abrogated in the presence of various polyanionic compounds. These anionic polymers also decrease the enhancement of HIV infection mediated by semen. These findings suggest that SEVI enhances viral infection by serving as a polycationic bridge that neutralizes the negative charge repulsion that exists between HIV virions and target cells. Combinations of agents that neutrale SEVI action and produce HIV virucidal effects are an attractive future direction for microbicide development.  相似文献   

9.
Serpin A1 (α1-AT), the largest subgroup of serpins, presents in human plasma at high concentration and plays important regulatory roles in physiological and pathological processes. Accumulated evidence suggests that α1-AT may play a role in controlling HIV-1 infection. In this study, we designed and synthesized a set of short linear peptides derived from the C-terminal sequence of α1-AT. Since none of them showed significant anti-HIV-1 activity, we proceeded to synthesize four short cyclic peptides having 7 amino acids, and we found that three of them exhibited significant anti-HIV-1 activity. One of these cyclic peptides, designated CPM, inhibited HIV-1 entry and infection at low μM level, indicating that these short cyclic peptides could serve as leads for the development of novel anti-HIV-1 therapeutics.  相似文献   

10.
Among the modes of transmission available to the cytomegalovirus (CMV) is sexual transmission, primarily via semen. Both male-to-female (M-F) and male-to-male (M-M) sexual transmission significantly contribute toward the spread of CMV infections in the global population. Semen plays an important role in carrying the viral particle that invades the vaginal or rectal mucosa, thereby initiating viral replication. Both semen and seminal plasma (SP) can enhance HIV-1 infection in cell culture, and two amyloid fibrils, semen-derived enhancer of viral infection (SEVI) and amyloids derived from the semenogelins (SEM amyloids), have been identified as seminal factors sufficient to enhance HIV-1 infection (J. Munch et al., Cell 131:1059–1071, 2007; N. R. Roan et al., Cell Host Microbe 10:541–550, 2011; F. Arnold et al., J. Virol. 86:1244–1249, 2012). Whether SP, SEVI, or SEM amyloids can enhance other viral infections has not been extensively examined. In this study, we found that SP, SEVI, and SEM amyloids strongly enhance both human CMV (HCMV) and murine CMV infection in cell culture. SEVI and SEM amyloids increased infection rates by >10-fold, as determined by both flow cytometry and fluorescence microscopy. Viral replication was increased by 50- to 100-fold. Moreover, viral growth curve assays showed that SP, SEVI, and SEM amyloids sped up the kinetics of CMV replication such that the virus reached its replicative peak more quickly. Finally, we discovered that SEM amyloids and SEVI counteracted the effect of anti-gH in protecting against CMV infection. Collectively, the data suggest that semen enhances CMV infection through interactions between semen amyloid fibrils and viral particles, and these interactions may prevent HCMV from being neutralized by anti-gH antibody.  相似文献   

11.
Amyloid fibers in human semen known as SEVI (semen-derived enhancer of viral infection) dramatically increase the infectivity of HIV and other enveloped viruses, which appears to be linked to the promotion of bridging interactions and the neutralization of electrostatic repulsion between the host and the viral cell membranes. The SEVI precursor PAP(248-286) is mostly disordered when bound to detergent micelles, in contrast to the highly α-helical structures found for most amyloid proteins. To determine the origin of this difference, the structures of PAP(248-286) were solved in aqueous solution and with 30% and 50% trifluoroethanol. In solution, pulsed field gradient (PFG)-NMR and (1)H-(1)H NOESY experiments indicate that PAP(248-286) is unfolded to an unusual degree for an amyloidogenic peptide but adopts significantly helical structures in TFE solutions. The clear differences between the structures of PAP(248-286) in TFE and SDS indicate electrostatic interactions play a large role in the folding of the peptide, consistent with the slight degree of penetration of PAP(248-286) into the hydrophobic core of the micelle. This is another noticeable difference between PAP(248-286) and other amyloid peptides, which generally show penetration into at least the headgroup region of the bilayer, and may explain some of the unusual properties of SEVI.  相似文献   

12.
Human Immunodeficiency Virus (HIV-1) poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb)-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL) and CXCR4-tropic HIV-1 strains (IIIB and NL4-3). Surface plasmon resonance (SPR) and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV). Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection.  相似文献   

13.
Polymorphisms in human genes have been shown to affect the rate of disease progression to acquired immune deficiency syndrome in human immunodeficiency virus type 1 (HIV-1)-infected individuals. Recently, tripartite motif 5α (TRIM5α) was identified as a factor that confers resistance to HIV-1 infection in Old World monkey cells. Subsequently, Sawyer et al. (Curr Biol 16:95–100, 2006) reported a single nucleotide polymorphism (H43Y) in the human TRIM5α gene and TRIM5α protein with 43Y was found to lose its ability to restrict HIV-1. In the present study, we reevaluated effects of this allele on in vitro anti-HIV-1 activity as well as on HIV-1 disease progression in European and Asian cohorts of HIV-1-infected individuals. Our epidemiological and molecular biological findings clearly indicate H43Y has a very minor effect on anti-HIV-1 activity of TRIM5α, suggesting that this allele is immaterial, at least in HIV-1-infected Europeans and Asians.  相似文献   

14.
15.
Seo JK  Kim HK  Lee TY  Hahm KS  Kim KL  Lee MK 《Peptides》2005,26(11):2175-2181
C34-LAI containing amino acids 118 to 151 of the HIV-1(LAI) gp41 ectodomain exhibits potent anti-HIV-1 activity. However, the N-terminal halves of C34 peptides vary more according to the HIV-1 strain than the C-terminal halves. Therefore, an analysis was conducted on the anti-HIV-1 activities of the C34 peptides derived from various HIV-1 strains. C34-89.6 exhibited the strongest anti-HIV-1 activity among the C34 peptides tested. Interestingly, its N-terminal half was more acidic than those of the other C34 peptides, whereas its C-terminal half was more basic. Since the C-peptides derived from the HIV-1(LAI) strain are used extensively, the anti-HIV-1 activities of these peptides were compared between the HIV-1 strains 89.6 and LAI. When using chimeric peptides, it was found that the C-terminal basic region of C34-89.6 was more critical than its N-terminal basic region. The anti-HIV-1 activity of T20-89.6 and C28-89.6 was also stronger than that of T20-LAI and C28-LAI, respectively. The anti-HIV-1 activity of C28-89.6 was weakened when the C-terminal basic residues were changed to the corresponding residues of C28-LAI. However, no conformational differences were found among the C28 peptides. Accordingly, these results imply that introducing the C-terminal basic residues of the HIV-1 89.6 C-peptide may be useful for developing potent anti-HIV-1 drugs.  相似文献   

16.
Lamellarin α and six different types of lamellarin α 20-sulfate analogues were synthesized and their structure–activity relationships were investigated using a single round HIV-1 vector infection assay. All lamellarin sulfates having pentacyclic lamellarin core exhibited anti-HIV-1 activity at a 10 μM concentration range regardless of the number and position of the sulfate group. On the other hand, non-sulfated lamellarin α and ring-opened lamellarin sulfate analogues did not affect HIV-1 vector infection in similar concentrations. The lamellarin sulfates utilized in this study did not exhibit unfavorable cytotoxic effect under the concentrations tested (IC50 > 100 μM). Confocal laser scanning microscopic analysis indicated that hydrophilic lamellarin sulfates were hardly incorporated in the cell. HIV-1 Env-mediated cell–cell fusion was suppressed by lamellarin sulfates. These results suggested that lamellarin sulfates have a novel anti-HIV-1 activity besides the previously reported integrase activity inhibition, possibly at a viral entry step of HIV-1 replication.  相似文献   

17.
Semen-derived enhancer of virus infection (SEVI), a naturally occurring peptide fragment of prostatic acid phosphatase, enhances HIV infectivity by forming cationic amyloid fibrils that aid the fusion of negatively charged virion and target cell membranes. Cu(II) and Zn(II) inhibit fibrillization of SEVI in a kinetic assay using the fibril-specific dye ThT. TEM suggests that the metals do not affect fibril morphology. NMR shows that the metals bind to histidines 3 and 23 in the SEVI sequence. ITC experiments indicate that SEVI forms oligomeric complexes with the metals. Dissociation constants are micromolar for Cu(II) and millimolar for Zn(II). Because the Cu(II) and Zn(II) concentrations that inhibit fibrillization are comparable with those found in seminal fluid the metals may modulate SEVI fibrillization under physiological conditions.  相似文献   

18.
Cervicovaginal lavage fluid (CVL) is a natural source of anti-HIV-1 factors; however, molecular characterization of the anti-HIV-1 activity of CVL remains elusive. In this study, we confirmed that CVLs from HIV-1-resistant (HIV-R) compared to HIV-1-susceptible (HIV-S) commercial sex workers (CSWs) contain significantly larger amounts of serine antiprotease trappin-2 (Tr) and its processed form, elafin (E). We assessed anti-HIV-1 activity of CVLs of CSWs and recombinant E and Tr on genital epithelial cells (ECs) that possess (TZM-bl) or lack (HEC-1A) canonical HIV-1 receptors. Our results showed that immunodepletion of 30% of Tr/E from CVL accounted for up to 60% of total anti-HIV-1 activity of CVL. Knockdown of endogenous Tr/E in HEC-1A cells resulted in significantly increased shedding of infectious R5 and X4 HIV-1. Pretreatment of R5, but not X4 HIV-1, with either Tr or E led to inhibition of HIV-1 infection of TZM-bl cells. Interestingly, when either HIV-1 or cells lacking canonical HIV-1 receptors were pretreated with Tr or E, HIV-1 attachment and transcytosis were significantly reduced, and decreased attachment was not associated with altered expression of syndecan-1 or CXCR4. Determination of 50% inhibitory concentrations (IC(50)) of Tr and E anti-HIV-1 activity indicated that E is ~130 times more potent than its precursor, Tr, despite their equipotent antiprotease activities. This study provides the first experimental evidence that (i) Tr and E are among the principal anti-HIV-1 molecules of CVL; (ii) Tr and E affect cell attachment and transcytosis of HIV-1; (iii) E is more efficient than Tr regarding anti-HIV-1 activity; and (iv) the anti-HIV-1 effect of Tr and E is contextual.  相似文献   

19.
20.
Although human cells are resistant to homologous human complement due to the presence of species-specific membrane inhibitors, a naturally occurring IgM antibody which recognizes an asialo-oligosaccharide can sensitize HIV-1-infected cells for complement-mediated cytolysis. Therefore, we investigated whether long-term survivors of HIV-1 infection harbor such antibodies in their sera. Thirty of 31 sera from HIV-1 seropositive hemophilia patients who have survived HIV-1 infection 10 years or more showed appreciable cytolytic activity, while only 2 sera of 10 seropositive patients presumed to have been infected with HIV-1 (due to sexual contact) more recently showed cytolytic activity. On the other hand, only 7 out of 43 sera from seronegative hemophilia patients showed cytolytic activity. Immunofluorescence staining for IgM on HIV-L -infected cells essentially correlated with the cytolytic capacity of the sera. Therefore, naturally occurring IgM antibodies and/or generated IgM antibodies reactive with the HIV-L -infected cells in patients might have been responsible for long-term survival due to complement-mediated immune cytolysis which may, in conjunction with cytotoxic T lymphocytes, synergistically suppress the infected cells in vivo. Therefore, the transfusion of such IgM antibodies could be effective for the treatment of HIV-L -infected individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号