首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
We consider whether the continuum model of hydration optimized to reproduce vacuum-to-water transfer free energies simultaneously describes the hydration free energy contributions to conformational equilibria of the same solutes in water. To this end, transfer and conformational free energies of idealized hydrophobic and amphiphilic solutes in water are calculated from explicit water simulations and compared to continuum model predictions. As benchmark hydrophobic solutes, we examine the hydration of linear alkanes from methane through hexane. Amphiphilic solutes were created by adding a charge of +/-1e to a terminal methyl group of butane. We find that phenomenological continuum parameters fit to transfer free energies are significantly different from those fit to conformational free energies of our model solutes. This difference is attributed to continuum model parameters that depend on solute conformation in water, and leads to effective values for the free energy/surface area coefficient and Born radii that best describe conformational equilibrium. In light of these results, we believe that continuum models of hydration optimized to fit transfer free energies do not accurately capture the balance between hydrophobic and electrostatic contributions that determines the solute conformational state in aqueous solution.  相似文献   

2.
The binding of a netropsin analogue to random sequence DNA, monitored by CD, is seen dependent on the concentration of neutral solutes. The binding free energy decreases linearly with solute osmolal concentration and the magnitude of the effect is insensitive to the chemical identity of the solute fur betaine, sorbitol, and triethylene glycol. These solutes appear to modulate binding through their effect on water activity and changes in the hydration of the drug and DNA in the complex reaction, not through a direct interaction with the reactants or the product. The dependence of binding constant on solute concentration can be interpreted as an additional binding of some 50–60 extra solute excluding water molecules by the complex. A water sensitivity of drug binding is further seen from the dependence of binding constants on the type of anion in solution. Anions in the Hofmeister series strongly affect bulk water free energies and entropies. The differences in netropsin analogue binding to DNA with Cl, F, and CIO are consistent with the effect observed with neutral solutes. The ability to measure changes in water binding associated with a specific DNA interaction is a first step toward correlating changes in hydration with the strength and specificity of binding. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
4.
N Janes  J W Hsu  E Rubin  T F Taraschi 《Biochemistry》1992,31(39):9467-9472
A generalized, colligative thermodynamic framework is used to treat the action of solutes on cooperative membrane equilibria. Configurational entropy, the randomness imparted by solutes through the partitioning or mixing process, is implicated as the energetic driving force for the action of anesthetics on cooperative membrane equilibria. The equilibria predicted to be most sensitive to solute action--in which the dilute solute causes a perturbation equivalent to a large change in temperature--are (1) low-enthalpy processes that coincide with (2) large partitioning differences between states. The model stresses that solutes do not act at a single site, but on both states in an equilibrium, and that the perturbation is determined by the difference in entropy. Evidence for the thermodynamic framework is obtained from the partitioning behavior of the general anesthetic 1-hexanol into a model lecithin (DMPC; 1,2-dimyristoyl-sn-glycero-3-phosphocholine) membrane as a function of temperature and alcohol concentration. The low-enthalpy equilibrium between the gel (L beta') and ripple states (P beta') (pretransition) is more sensitive to 1-hexanol than the high-enthalpy equilibrium between the ripple (P beta') and fluid bilayer states (L alpha) (main transition). The perturbations of both equilibria are accurately described by the colligative thermodynamic framework. The results suggest that alcohols and anesthetics act through entropy to upset the natural thermal balance that maintains native membrane architecture.  相似文献   

5.
6.
7.
摘要 目的:揭示次氯酸与不饱和脂肪酸的氧化反应机制及转化产物。方法:运用Gaussian 16软件包,采用密度泛函方法M06-2X(D3),结合6-31+G(d)基组,在SMD液相水模型水平下进行计算。结果:次氯酸与单不饱和脂肪酸油酸的氧化反应是先形成氯鎓离子中间体,氯鎓离子再与水分子反应生成氯醇,第一步氯鎓离子的形成是控速步骤,其反应活化自由能~8 kcal/mol。环氧化合物和短链的醛是两种转化产物,前者由氯醇脱氯化氢而来,而后者由环氧化合物和氯醇通过系列与次氯酸根的反应而得到,生成它们的控速步骤的反应活化自由能分别为23 和24 kcal/mol。选取两个乙基为取代基的乙烯为油酸模型,其与次氯酸反应的活化自由能仅比油酸高1 kcal/mol。计算得到次氯酸与亚油酸、顺-9,反-11 亚油酸、梓树酸和花生四烯酸模型氧化反应生成氯醇的活化自由能分别是~10、13、16和14 kcal/mol。结论:氯鎓离子中间体机制是次氯酸与不饱和脂肪酸氧化反应的主要机制,反应的活化自由能通常低于15 kcal/mol,意味着此氧化反应动力学上容易发生。氧化产物氯醇能转化为环氧化合物和短链的醛,但活化自由能较高,约23和24 kcal/mol。选取距离双键3个碳以内的结构为不饱和脂肪酸模型,它能够很好地反映不饱和脂肪酸的反应活性。  相似文献   

8.
Motivated by experiments on condensed DNA phases in binary mixtures of water and a low-dielectric solute, we develop a theory for the electrostatic contribution to solute exclusion from a highly charged phase, within the continuum approximation of the medium. Because the electric field is maximum at the surface of each ion, the electrostatic energy is dominated by the Born energy; interactions between charges are of secondary importance. Neglecting interactions and considering only the competition between the Born energy and the free energy of mixing, we predict that low dielectric solutes are excluded from condensed DNA phases in water-cosolvent mixtures. This suggests that the traditional continuum electrostatic approach of modeling binary mixtures with a uniform dielectric constant needs to be modified. The linking of solute exclusion to solute dielectric properties also suggests a mechanism for predicting the electrostatic contribution to preferential hydration of polar and charged surfaces.  相似文献   

9.
A simple molecular model for the thermodynamic behavior of non-polar solutes in water and in aqueous solutions of protein denaturants is presented. Three contributions are considered: (i) combinatorial arising from the mixing process, (ii) interactional characterizing the molecular interactions occurring in the mixture and (iii) a contribution originating from the structural changes occurring in the first shell of water molecules around the solute. The latter is modeled assuming that water molecules in contact with the solute are involved in a chemical equilibrium between two states. The model describes well the temperature and denaturant concentration dependences of the Gibbs energies of solution and transfer for benzene, toluene and alkanes in water and aqueous solutions of urea and guanidine hydrochloride. Model parameters are physically meaningful, allowing a discussion of the molecular interactions involved. A preferential solvation of the solute by the denaturant is found. However, the non-polar solute-denaturant interaction is not specific, i.e. leading to a distinct chemical entity. Urea and guanidine hydrochloride are non-polar solubilizing agents because their interactions with the solute are less unfavorable than those between water and the solute.  相似文献   

10.
We are developing an experimental system for testing the effects of macromolecular crowding and molecular confinement on protein structure. In the present study, solvent effects on the secondary structure of two proteins were examined by circular dichroism following encapsulation in the hydrated pores of a silica glass matrix by the sol-gel method. Changes in the unfolded conformations of encapsulated apomyoglobin and reduced serum albumin were analyzed after equilibration with aqueous solutions of natural osmolytes, short-chain alcohols, polyethylene glycol, and a complete series of Hofmeister cations. In many instances, the alpha-helical content of the encapsulated protein was increased by addition of solutes at concentrations that have no effect on the protein in the absence of the glass. The results are discussed from the perspective of water structure. We argue that perturbed water at the silica interface causes an increase in the average free energy of the bulk water phase which, consequently, diminishes the strength of the hydrophobic effect inside the glass matrix and destabilizes the conformation of encapsulated proteins. We propose that solutes can increase the strength of the hydrophobic effect and influence folding equilibria without directly interacting with the protein. A hypothesis is provided for the apparent paradox that kosmotropic (strongly water binding) anions favor native protein structure, whereas chaotropic (weakly water binding) cations enhance native protein structure. The encapsulation results suggest that macromolecular crowding and molecular confinement are accompanied by hydration effects that may oppose or potentiate the stabilizing effects of excluded volume on protein structure, depending on the surface chemistry of the crowding agent and its influence on bulk water structure. In the crowded environment of a living cell, excluded volume effects, surface-induced water structure, and compatible solutes are expected to complement the dominant forces in protein folding.  相似文献   

11.
A method to calculate the solvation free energy density (SFED) at any point in the cavity surface or solvent volume surrounding a solute is proposed. In the special case in which the solvent is water, the SFED is referred to as the hydration free energy density (HFED). The HFED is described as a function of some physical properties of the molecules. These properties are represented by simple basis functions. The hydration free energy of a solute was obtained by integrating the HFED over the solvent volume surrounding the solute, using a grid model. Of 34 basis functions that were introduced to describe the HFED, only six contribute significantly to the HFED. These functions are representations of the surface area and volume of the solute, of the polarization and dispersion of the solute, and of two types of electrostatic interactions between the solute and its environment. The HFED is described as a linear combination of these basis functions, evaluated by summing the interaction energy between each atom of the solute with a grid point in the solvent, where each grid point is a representation of a finite volume of the solvent. The linear combination coefficients were determined by minimizing the error between the calculated and experimental hydration free energies of 81 neutral organic molecules that have a variety of functional groups. The calculated hydration free energies agree well with the experimental results. The hydration free energy of any other solute molecule can then be calculated by summing the product of the linear combination coefficients and the basis functions for the solute.  相似文献   

12.
Shimizu S  Chan HS 《Proteins》2002,48(1):15-30
Potentials of mean force (PMFs) of three-body hydrophobic association are investigated to gain insight into similar processes in protein folding. Free energy landscapes obtained from explicit simulations of three methanes in water are compared with that predicted by popular implicit-solvent effective potentials for the study of proteins. Explicit-water simulations show that for an extended range of three-methane configurations, hydrophobic association at 25 degrees C under atmospheric pressure is mostly anti-cooperative, that is, less favorable than if the interaction free energies were pairwise additive. Effects of free energy nonadditivity on the kinetic path of association and the temperature dependence of additivity are explored by using a three-methane system and simplified chain models. The prevalence of anti-cooperativity under ambient conditions suggests that driving forces other than hydrophobicity also play critical roles in protein thermodynamic cooperativity. We evaluate the effectiveness of several implicit-solvent potentials in mimicking explicit water simulated three-body PMFs. The favorability of the contact free energy minimum is found to be drastically overestimated by solvent accessible surface area (SASA). Both the SASA and a volume-based Gaussian solvent exclusion model fail to predict the desolvation barrier. However, this barrier is qualitatively captured by the molecular surface area model and a recent "hydrophobic force field." None of the implicit-solvent models tested are accurate for the entire range of three-methane configurations and several other thermodynamic signatures considered.  相似文献   

13.
An explanation is provided for the experimentally observed temperature dependence of the solubility and the solubility minimum of non-polar gases in water. The influence of solute size and solute-water attractive interactions on the solubility minimum temperature is investigated. The transfer of a non-polar solute from the ideal gas into water is divided into two steps: formation of a cavity in water with the size and shape of the solute and insertion of the solute in this cavity which is equivalent to 'turning on' solute-water attractive interactions. This two step process divides the excess chemical potential of the non-polar solute in water into repulsive and attractive contributions, respectively. The reversible work for cavity formation is modeled using an information theory model of hydrophobic hydration. Attractive contributions are calculated by modeling the water structure in the vicinity of non-polar solutes. These models make a direct connection between microscopic quantities and macroscopic observables. Moreover, they provide an understanding of the peculiar temperature dependences of the hydration thermodynamics from properties of pure water; specifically, bulk water density and the water oxygen-oxygen radial distribution function.  相似文献   

14.
Abstract

The confinement method is a robust and conceptually simple free energy simulation method that allows the calculation of conformational free energy differences between highly dissimilar states. Application of the method to explicitly solvated systems requires a multi-stage simulation protocol for the calculation of desolvation free energies. Here we show that these desolvation free energies can be readily obtained from an implicit treatment, which is simpler and less costly. The accuracy and robustness of this protocol was shown by the calculation of conformational free energy differences of a series of explicitly solvated test systems. Given the accuracy and ease by which these free energy differences were obtained, the confinement method is promising for the treatment of conformational changes in large and complex systems.  相似文献   

15.
D A Pearlman  P A Kollman 《Biopolymers》1990,29(8-9):1193-1209
We have examined the free energy effects of 5-methylation of cytosine on the B in equilibrium Z conformational equilibrium in DNA. Free energy differences were calculated using the free energy perturbation approach, which uses an easily derived equation from classical statistical mechanics to relate the free energy difference between two states to the ensemble average of the potential energy difference between the states. Calculations were carried both in explicit solvent and (for comparison) in vacuo. The free energy values obtained for the explicit solvent systems are total free energies, with contributions from all parts of the system (solvent + solute), and so are relevant to the B in equilibrium Z transitions observed under real (physiological) conditions. We calculate that in solution, methylation makes the B in equilibrium Z transition more favorable by about -0.4 kcal/mole base pair (bp) in free energy. This value compares well with approximate experimentally derived values of about -0.3 kcal/mole-bp. We also discuss a method for determining the free energy difference between conformational states poorly maintained by a potential energy model. Finally, the effects of methylation on the melting temperature of DNA are examined.  相似文献   

16.
Studies have been made of the reactive extraction of penicillin G by Amberlite LA-2, a secondary amine, dissolved in kerosene. On the basis of the previous works about extraction equilibria of monocarboxylic acids by some secondary amines in low polar organic solvents, four equilibrium models were suggested to describe the reaction equilibrium of penicillin G in the liquid-liquid extraction system. The calculated results from the models were compared with the experimental data of 96 runs, and only two equilibrium models seemed to be probable. Ultimately, the most reasonable extraction equilibrium model was chosen through spectroscopic studies on organic solutions obtained by five specific extraction equilibrium experiments.  相似文献   

17.
Shimizu S  Chan HS 《Proteins》2002,49(4):560-566
Free energies of pairwise hydrophobic association are simulated in aqueous solutions of urea at concentrations ranging from 0-8 M. Consistent with the expectation that hydrophobic interactions are weakened by urea, the association of relatively large nonpolar solutes is destabilized by urea. However, the association of two small methane-sized nonpolar solutes in water has the opposite tendency of being slightly strengthened by the addition of urea. Such size effects and the dependence of urea-induced stability changes on the configuration of nonpolar solutes are not predicted by solvent accessible surface area approaches based on energetic parameters derived from bulk-phase solubilities of model compounds. Thus, to understand hydrophobic interactions in proteins, it is not sufficient to rely solely on transfer experiment data that effectively characterize a single nonpolar solute in an aqueous environment but not the solvent-mediated interactions among two or more nonpolar solutes. We find that the m-values for the rate of change of two-methane association free energy with respect to urea concentration is a dramatically nonmonotonic function of the spatial separation between the two methanes, with a distance-dependent profile similar to the corresponding two-methane heat capacity of association in pure water. Our results rationalize the persistence of residual hydrophobic contacts in some proteins at high urea concentrations and explain why the heat capacity signature (DeltaC(P)) of a compact denatured state can be similar to DeltaC(P) values calculated by assuming an open random-coil-like unfolded state.  相似文献   

18.
What energetic and solvation effects underlie the remarkable two-state thermodynamics and folding/unfolding kinetics of small single-domain proteins? To address this question, we investigate the folding and unfolding of a hierarchy of continuum Langevin dynamics models of chymotrypsin inhibitor 2. We find that residue-based additive Gō-like contact energies, although native-centric, are by themselves insufficient for protein-like calorimetric two-state cooperativity. Further native biases by local conformational preferences are necessary for protein-like thermodynamics. Kinetically, however, even models with both contact and local native-centric energies do not produce simple two-state chevron plots. Thus a model protein's thermodynamic cooperativity is not sufficient for simple two-state kinetics. The models tested appear to have increasing internal friction with increasing native stability, leading to chevron rollovers that typify kinetics that are commonly referred to as non-two-state. The free energy profiles of these models are found to be sensitive to the choice of native contacts and the presumed spatial ranges of the contact interactions. Motivated by explicit-water considerations, we explore recent treatments of solvent granularity that incorporate desolvation free energy barriers into effective implicit-solvent intraprotein interactions. This additional feature reduces both folding and unfolding rates vis-à-vis that of the corresponding models without desolvation barriers, but the kinetics remain non-two-state. Taken together, our observations suggest that interaction mechanisms more intricate than simple Gō-like constructs and pairwise additive solvation-like contributions are needed to rationalize some of the most basic generic protein properties. Therefore, as experimental constraints on protein chain models, requiring a consistent account of protein-like thermodynamic and kinetic cooperativity can be more stringent and productive for some applications than simply requiring a model heteropolymer to fold to a target structure.  相似文献   

19.
20.
The attractive interaction between basic protein domains and membranes containing acidic lipids is critical to the membrane attachment of many proteins involved in cell signaling. In this study, a series of charged model peptides containing lysine, phenylalanine, and the spin-labeled amino acid tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid (TOAC) were synthesized, and electron paramagnetic resonance (EPR) spectroscopy was used to determine their position on the membrane interface and free energy of binding. When membrane-bound, peptides containing only lysine and TOAC assume an equilibrium position within the aqueous double layer at a distance of approximately 5 A from the membrane interface, a result that is consistent with recent computational work. Substitution of two or more lysine residues by phenylalanine dramatically slows the backbone diffusion of these peptides and shifts their equilibrium position by 13-15 A so that the backbone lies several angstroms below the level of the lipid phosphate. These results are consistent with the hypothesis that the position and free energy of basic peptides when bound to membranes are determined by a long-range Coulombic attraction, the hydrophobic effect, and a short-range desolvation force. The differences in binding free energy within this set of charged peptides is not well accounted for by the simple addition of free energies based upon accepted side chain partition free energies, a result that appears to be in part due to differences in membrane localization of these peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号