首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Malaria is endemic in 13 of 64 districts of Bangladesh, representing a population at risk of about 27 million people. The highest rates of malaria in Bangladesh occur in the Chittagong Hill Districts, and Plasmodium falciparum (predominately chloroquine resistant) is the most prevalent species.

Methods

The objective of this research was to describe the epidemiology of symptomatic P. falciparum malaria in an area of Bangladesh following the introduction of a national malaria control program. We carried out surveillance for symptomatic malaria due to P. falciparum in two demographically defined unions of the Chittagong Hill Districts in Bangladesh, bordering western Myanmar, between October 2009 and May 2012. The association between sociodemographics and temporal and climate factors with symptomatic P. falciparum infection over two years of surveillance data was assessed. Risk factors for infection were determined using a multivariate regression model.

Results

472 cases of symptomatic P. falciparum malaria cases were identified among 23,372 residents during the study period. Greater than 85% of cases occurred during the rainy season from May to October, and cases were highly clustered geographically within these two unions with more than 80% of infections occurring in areas that contain approximately one-third of the total population. Risk factors statistically associated with infection in a multivariate logistic regression model were living in the areas of high incidence, young age, and having an occupation including jhum cultivation and/or daily labor. Use of long lasting insecticide-treated bed nets was high (89.3%), but its use was not associated with decreased incidence of infection.

Conclusion

Here we show that P. falciparum malaria continues to be hypoendemic in the Chittagong Hill Districts of Bangladesh, is highly seasonal, and is much more common in certain geographically limited hot spots and among certain occupations.  相似文献   

2.

Background

Areas endemic for Plasmodium falciparum, hepatitis B virus (HBV) and hepatitis C virus (HCV) overlap in many parts of sub-Saharan Africa. HBV and HCV infections develop in the liver, where takes place the first development stage of P. falciparum before its further spread in blood. The complex mechanisms involved in the development of hepatitis may potentially influence the development of the liver stage of malaria parasites. Understanding the molecular mechanisms of these interactions could provide new pathophysiological insights for treatment strategies in Malaria.

Methodology

We studied a cohort of 319 individuals living in a village where the three infections are prevalent. The patients were initially given a curative antimalarial treatment and were then monitored for the emergence of asexual P. falciparum forms in blood, fortnightly for one year, by microscopy and polymerase chain reaction.

Principal Findings

At inclusion, 65 (20.4%) subjects had detectable malaria parasites in blood, 36 (11.3%) were HBV chronic carriers, and 61 (18.9%) were HCV chronic carriers. During follow-up, asexual P. falciparum forms were detected in the blood of 203 patients. The median time to P. falciparum emergence in blood was respectively 140 and 120 days in HBV- and HBV+ individuals, and 135 and 224 days in HCV- and HCV+ individuals. HCV carriage was associated with delayed emergence of asexual P. falciparum forms in blood relative to patients without HCV infection.

Conclusions

This pilot study represents first tentative evidence of a potential epidemiological interaction between HBV, HCV and P. falciparum infections. Age is an important confounding factor in this setting however multivariate analysis points to an interaction between P. falciparum and HCV at the hepatic level with a slower emergence of P. falciparum in HCV chronic carriers. More in depth analysis are necessary to unravel the basis of hepatic interactions between these two pathogens, which could help in identifying new therapeutic approaches against malaria.  相似文献   

3.

Background

In humans it is unknown if the composition of the gut microbiota alters the risk of Plasmodium falciparum infection or the risk of developing febrile malaria once P. falciparum infection is established. Here we collected stool samples from a cohort composed of 195 Malian children and adults just prior to an intense P. falciparum transmission season. We assayed these samples using massively parallel sequencing of the 16S ribosomal RNA gene to identify the composition of the gut bacterial communities in these individuals. During the ensuing 6-month P. falciparum transmission season we examined the relationship between the stool microbiota composition of individuals in this cohort and their prospective risk of both P. falciparum infection and febrile malaria.

Results

Consistent with prior studies, stool microbial diversity in the present cohort increased with age, although the overall microbiota profile was distinct from cohorts in other regions of Africa, Asia and North America. Age-adjusted Cox regression analysis revealed a significant association between microbiota composition and the prospective risk of P. falciparum infection; however, no relationship was observed between microbiota composition and the risk of developing febrile malaria once P. falciparum infection was established.

Conclusions

These findings underscore the diversity of gut microbiota across geographic regions, and suggest that strategic modulation of gut microbiota composition could decrease the risk of P. falciparum infection in malaria-endemic areas, potentially as an adjunct to partially effective malaria vaccines.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1819-3) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Where P. vivax and P. falciparum occur in the same population, the peak burden of P. vivax infection and illness is often concentrated in younger age groups. Experiences from malaria therapy patients indicate that immunity is acquired faster to P. vivax than to P. falciparum challenge. There is however little prospective data on the comparative risk of infection and disease from both species in young children living in co-endemic areas.

Methodology/Principal Findings

A cohort of 264 Papua New Guinean children aged 1-3 years (at enrolment) were actively followed-up for Plasmodium infection and febrile illness for 16 months. Infection status was determined by light microscopy and PCR every 8 weeks and at each febrile episode. A generalised estimating equation (GEE) approach was used to analyse both prevalence of infection and incidence of clinical episodes. A more pronounced rise in prevalence of P. falciparum compared to P. vivax infection was evident with increasing age. Although the overall incidence of clinical episodes was comparable (P. falciparum: 2.56, P. vivax 2.46 episodes / child / yr), P. falciparum and P. vivax infectious episodes showed strong but opposing age trends: P. falciparum incidence increased until the age of 30 months with little change thereafter, but incidence of P. vivax decreased significantly with age throughout the entire age range. For P. falciparum, both prevalence and incidence of P. falciparum showed marked seasonality, whereas only P. vivax incidence but not prevalence decreased in the dry season.

Conclusions/Significance

Under high, perennial exposure, children in PNG begin acquiring significant clinical immunity, characterized by an increasing ability to control parasite densities below the pyrogenic threshold to P. vivax, but not to P. falciparum, in the 2nd and 3rd year of life. The ability to relapse from long-lasting liver-stages restricts the seasonal variation in prevalence of P. vivax infections.  相似文献   

5.

Background

Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC) is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are ‘resistant’ to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens.

Methodology/Findings

We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1) and Duffy binding protein (PvDBP) varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull) were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B). The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion.

Conclusion/Significance

Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the primary mechanisms by which P. vivax evades host immunity is through DARC indirectly down-regulating humoral responses against erythrocytic invasion and development.  相似文献   

6.

Background

Pregnancy is a known risk factor for malaria which is associated with increased maternal and infant mortality and morbidity in areas of moderate-high malaria transmission intensity where Plasmodium falciparum predominates. The nature and impact of malaria, however, is not well understood in pregnant women residing in areas of low, unstable malaria transmission where P. falciparum and P. vivax co-exist.

Methods

A large longitudinal active surveillance study of malaria was conducted in the Chittagong Hill Districts of Bangladesh. Over 32 months in 2010–2013, the period prevalence of asymptomatic P. falciparum infections was assessed by rapid diagnostic test and blood smear and compared among men, non-pregnant women and pregnant women. A subset of samples was tested for infection by PCR. Hemoglobin was assessed. Independent risk factors for malaria infection were determined using a multivariate logistic regression model.

Results

Total of 34 asymptomatic P. falciparum infections were detected by RDT/smear from 3,110 tests. The period prevalence of asymptomatic P. falciparum infection in pregnant women was 2.3%, compared to 0.5% in non-pregnant women and 0.9% in men. All RDT/smear positive samples that were tested by PCR were PCR-positive, and PCR detected additional 35 infections that were RDT/smear negative. In a multivariate logistic regression analysis, pregnant women had 5.4-fold higher odds of infection as compared to non-pregnant women. Malaria-positive pregnant women, though asymptomatic, had statistically lower hemoglobin than those without malaria or pregnancy. Asymptomatic malaria was found to be evenly distributed across space and time, in contrast to symptomatic infections which tend to cluster.

Conclusion

Pregnancy is a risk factor for asymptomatic P. falciparum infection in the Chittagong Hill Districts of Bangladesh, and pregnancy and malaria interact to heighten the effect of each on hemoglobin. The even distribution of asymptomatic malaria, without temporal and spatial clustering, may have critical implications for malaria elimination strategies.  相似文献   

7.

Background

Malaria, schistosomiasis and soil transmitted helminth infections (STH) are important parasitic infections in Sub-Saharan Africa where a significant proportion of people are exposed to co-infections of more than one parasite. In Tanzania, these infections are a major public health problem particularly in school and pre-school children. The current study investigated malaria and helminth co-infections and anaemia in school and pre-school children in Magu district, Tanzania.

Methodology

School and pre-school children were enrolled in a cross-sectional study. Stool samples were examined for Schistosoma mansoni and STH infections using Kato Katz technique. Urine samples were examined for Schistosoma haematobium using the urine filtration method. Blood samples were examined for malaria parasites and haemoglobin concentrations using the Giemsa stain and Haemoque methods, respectively.

Principal Findings

Out of 1,546 children examined, 1,079 (69.8%) were infected with one or more parasites. Malaria-helminth co-infections were observed in 276 children (60% of all children with P. falciparum infection). Malaria parasites were significantly more prevalent in hookworm infected children than in hookworm free children (p = 0.046). However, this association was non-significant on multivariate logistic regression analysis (OR = 1.320, p = 0.064). Malaria parasite density decreased with increasing infection intensity of S. mansoni and with increasing number of co-infecting helminth species. Anaemia prevalence was 34.4% and was significantly associated with malaria infection, S. haematobium infection and with multiple parasite infections. Whereas S. mansoni infection was a significant predictor of malaria parasite density, P. falciparum and S. haematobium infections were significant predictors of anaemia.

Conclusions/Significance

These findings suggest that multiple parasite infections are common in school and pre-school children in Magu district. Concurrent P. falciparum, S. mansoni and S. haematobium infections increase the risk of lower Hb levels and anaemia, which in turn calls for integrated disease control interventions. The associations between malaria and helminth infections detected in this study need further investigation.  相似文献   

8.

Background

Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions.

Methods

To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence.

Findings

From the analysis of healthcare utilisation, over 80% of the population was within 2 hours’ travel of the nearest public health facility, while 64.4% were within 30 minutes’ travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2–9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4–2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000.

Conclusion

This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan.  相似文献   

9.

Background

In sub-Saharan Africa, Plasmodium falciparum and hepatitis A (HAV) infections are common, especially in children. Co-infections with these two pathogens may therefore occur, but it is unknown if temporal clustering exists.

Materials and Methods

We studied the pattern of co-infection of P. falciparum malaria and acute HAV in Kenyan children under the age of 5 years in a cohort of children presenting with uncomplicated P. falciparum malaria. HAV status was determined during a 3-month follow-up period.

Discussion

Among 222 cases of uncomplicated malaria, 10 patients were anti-HAV IgM positive. The incidence of HAV infections during P. falciparum malaria was 1.7 (95% CI 0.81–3.1) infections/person-year while the cumulative incidence of HAV over the 3-month follow-up period was 0.27 (95% CI 0.14–0.50) infections/person-year. Children with or without HAV co-infections had similar mean P. falciparum asexual parasite densities at presentation (31,000/µL vs. 34,000/µL, respectively), largely exceeding the pyrogenic threshold of 2,500 parasites/µL in this population and minimizing risk of over-diagnosis of malaria as an explanation.

Conclusion

The observed temporal association between acute HAV and P. falciparum malaria suggests that co-infections of these two hepatotrophic human pathogens may result from changes in host susceptibility. Testing this hypothesis will require larger prospective studies.  相似文献   

10.

Background

Plasmodium falciparum malaria remains a major cause of illness and death in sub-Saharan Africa. Young children bear the brunt of the disease and though older children and adults suffer relatively fewer clinical attacks, they remain susceptible to asymptomatic P. falciparum infection. A better understanding of the host factors associated with immunity to clinical malaria and the ability to sustain asymptomatic P. falciparum infection will aid the development of improved strategies for disease prevention.

Methods and Findings

Here we investigate whether full differential blood counts can predict susceptibility to clinical malaria among Kenyan children sampled at five annual cross-sectional surveys. We find that the ratio of monocytes to lymphocytes, measured in peripheral blood at the time of survey, directly correlates with risk of clinical malaria during follow-up. This association is evident among children with asymptomatic P. falciparum infection at the time the cell counts are measured (Hazard ratio (HR)  =  2.7 (95% CI 1.42, 5.01, P  =  0.002) but not in those without detectable parasitaemia (HR  =  1.0 (95% CI 0.74, 1.42, P  =  0.9).

Conclusions

We propose that the monocyte to lymphocyte ratio, which is easily derived from routine full differential blood counts, reflects an individual''s capacity to mount an effective immune response to P. falciparum infection.  相似文献   

11.

Introduction

Cerebral malaria (CM) is a potentially fatal cerebrovascular disease of complex pathogenesis caused by Plasmodium falciparum. Hydrogen sulfide (HS) is a physiological gas, similar to nitric oxide and carbon monoxide, involved in cellular metabolism, vascular tension, inflammation, and cell death. HS treatment has shown promising results as a therapy for cardio- and neuro- pathology. This study investigates the effects of fast (NaHS) and slow (GYY4137) HS-releasing drugs on the growth and metabolism of P. falciparum and the development of P. berghei ANKA CM. Moreover, we investigate the role of free plasma thiols and cell surface thiols in the pathogenesis of CM.

Methods

P. falciparum was cultured in vitro with varying doses of HS releasing drugs compared with artesunate. Growth and metabolism were quantified. C57Bl/6 mice were infected with P. berghei ANKA and were treated with varying doses and regimes of HS-releasing drugs. Free plasma thiols and cell surface thiols were quantified in CM mice and age-matched healthy controls.

Results

HS-releasing drugs significantly and dose-dependently inhibited P. falciparum growth and metabolism. Treatment of CM did not affect P. berghei growth, or development of CM. Interestingly, CM was associated with lower free plasma thiols, reduced leukocyte+erythrocyte cell surface thiols (infection day 3), and markedly (5-fold) increased platelet cell surface thiols (infection day 7).

Conclusions

HS inhibits P. falciparum growth and metabolism in vitro. Reduction in free plasma thiols, cell surface thiols and a marked increase in platelet cell surface thiols are associated with development of CM. HS drugs were not effective in vivo against murine CM.  相似文献   

12.

Background

The high costs of pyridine nucleotide cofactors have limited the applications of NAD(P)-dependent oxidoreductases on an industrial scale. Although NAD(P)H regeneration systems have been widely studied, NAD(P)+ regeneration, which is required in reactions where the oxidized form of the cofactor is used, has been less well explored, particularly in whole-cell biocatalytic processes.

Methodology/Principal Findings

Simultaneous overexpression of an NAD+ dependent enzyme and an NAD+ regenerating enzyme (H2O producing NADH oxidase from Lactobacillus brevis) in a whole-cell biocatalyst was studied for application in the NAD+-dependent oxidation system. The whole-cell biocatalyst with (2R,3R)-2,3-butanediol dehydrogenase as the catalyzing enzyme was used to produce (3R)-acetoin, (3S)-acetoin and (2S,3S)-2,3-butanediol.

Conclusions/Significance

A recombinant strain, in which an NAD+ regeneration enzyme was coexpressed, displayed significantly higher biocatalytic efficiency in terms of the production of chiral acetoin and (2S,3S)-2,3-butanediol. The application of this coexpression system to the production of other chiral chemicals could be extended by using different NAD(P)-dependent dehydrogenases that require NAD(P)+ for catalysis.  相似文献   

13.

Background

Traditionally, vaccine development against the blood-stage of Plasmodium falciparum infection has focused on recombinant protein-adjuvant formulations in order to induce high-titer growth-inhibitory antibody responses. However, to date no such vaccine encoding a blood-stage antigen(s) alone has induced significant protective efficacy against erythrocytic-stage infection in a pre-specified primary endpoint of a Phase IIa/b clinical trial designed to assess vaccine efficacy. Cell-mediated responses, acting in conjunction with functional antibodies, may be necessary for immunity against blood-stage P. falciparum. The development of a vaccine that could induce both cell-mediated and humoral immune responses would enable important proof-of-concept efficacy studies to be undertaken to address this question.

Methodology

We conducted a Phase Ia, non-randomized clinical trial in 16 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding two alleles (3D7 and FVO) of the P. falciparum blood-stage malaria antigen; apical membrane antigen 1 (AMA1). ChAd63-MVA AMA1 administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to both alleles 3D7 (median 2036 SFU/million PBMC) and FVO (median 1539 SFU/million PBMC), with a mixed CD4+/CD8+ phenotype, as well as substantial AMA1-specific serum IgG responses (medians of 49 µg/mL and 41 µg/mL for 3D7 and FVO AMA1 respectively) that demonstrated growth inhibitory activity in vitro.

Conclusions

ChAd63-MVA is a safe and highly immunogenic delivery platform for both alleles of the AMA1 antigen in humans which warrants further efficacy testing. ChAd63-MVA is a promising heterologous prime-boost vaccine strategy that could be applied to numerous other diseases where strong cellular and humoral immune responses are required for protection.

Trial Registration

ClinicalTrials.gov NCT01095055  相似文献   

14.

Background

Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria.

Methods

A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories.

Results

Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children <4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012–2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition.

Conclusion

Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age.  相似文献   

15.

Background

Intermittent preventive treatment (IPT) of malaria involves administration of curative doses of antimalarials at specified time points to vulnerable populations in endemic areas, regardless whether a subject is known to be infected. The effect of this new intervention on the development and maintenance of protective immunity needs further understanding. We have investigated how seasonal IPT affects the genetic diversity of Plasmodium falciparum infections and the risk of subsequent clinical malaria.

Material and Methods

The study included 2227 Ghanaian children (3–59 months) who were given sulphadoxine-pyrimethamine (SP) bimonthly, artesunate plus amodiaquine (AS+AQ) monthly or bimonthly, or placebo monthly for six months spanning the malaria transmission season. Blood samples collected at three post-interventional surveys were analysed by genotyping of the polymorphic merozoite surface protein 2 gene. Malaria morbidity and anaemia was monitored during 12 months follow-up.

Results

Monthly IPT with AS+AQ resulted in a marked reduction in number of concurrent clones and only children parasite negative just after the intervention period developed clinical malaria during follow-up. In the placebo group, children without parasites as well as those infected with ≥2 clones had a reduced risk of subsequent malaria. The bimonthly SP or AS+AQ groups had similar number of clones as placebo after intervention; however, diversity and parasite negativity did not predict the risk of malaria. An interaction effect showed that multiclonal infections were only associated with protection in children without intermittent treatment.

Conclusion

Molecular typing revealed effects of the intervention not detected by ordinary microscopy. Effective seasonal IPT temporarily reduced the prevalence and genetic diversity of P. falciparum infections. The reduced risk of malaria in children with multiclonal infections only seen in untreated children suggests that persistence of antigenically diverse P. falciparum infections is important for the maintenance of protective malaria immunity in high transmission settings.  相似文献   

16.

Background

Given the widespread distribution of Plasmodium and helminth infections, and similarities of ecological requirements for disease transmission, coinfection is a common phenomenon in sub-Saharan Africa and elsewhere in the tropics. Interactions of Plasmodium falciparum and soil-transmitted helminths, including immunological responses and clinical outcomes of the host, need further scientific inquiry. Understanding the complex interactions between these parasitic infections is of public health relevance considering that control measures targeting malaria and helminthiases are going to scale.

Methodology

A cross-sectional survey was carried out in April 2010 in infants, young school-aged children, and young non-pregnant women in south-central Côte d''Ivoire. Stool, urine, and blood samples were collected and subjected to standardized, quality-controlled methods. Soil-transmitted helminth infections were identified and quantified in stool. Finger-prick blood samples were used to determine Plasmodium spp. infection, parasitemia, and hemoglobin concentrations. Iron, vitamin A, riboflavin, and inflammation status were measured in venous blood samples.

Principal Findings

Multivariate regression analysis revealed specific association between infection and demographic, socioeconomic, host inflammatory and nutritional factors. Non-pregnant women infected with P. falciparum had significantly lower odds of hookworm infection, whilst a significant positive association was found between both parasitic infections in 6- to 8-year-old children. Coinfected children had lower odds of anemia and iron deficiency than their counterparts infected with P. falciparum alone.

Conclusions/Significance

Our findings suggest that interaction between P. falciparum and light-intensity hookworm infections vary with age and, in school-aged children, may benefit the host through preventing iron deficiency anemia. This observation warrants additional investigation to elucidate the mechanisms and consequences of coinfections, as this information could have important implications when implementing integrated control measures against malaria and helminthiases.  相似文献   

17.

Background

Malaria and schistosomiasis coinfection frequently occurs in tropical countries. This study evaluates the influence of Schistosoma haematobium infection on specific antibody responses and cytokine production to recombinant merozoite surface protein-1-19 (MSP1-19) and schizont extract of Plasmodium falciparum in malaria-infected children.

Methodology

Specific IgG1 to MSP1-19, as well as IgG1 and IgG3 to schizont extract were significantly increased in coinfected children compared to P. falciparum mono-infected children. Stimulation with MSP1-19 lead to a specific production of both interleukin-10 (IL-10) and interferon-γ (IFN-γ), whereas the stimulation with schizont extract produced an IL-10 response only in the coinfected group.

Conclusions

Our study suggests that schistosomiasis coinfection favours anti-malarial protective antibody responses, which could be associated with the regulation of IL-10 and IFN-γ production and seems to be antigen-dependent. This study demonstrates the importance of infectious status of the population in the evaluation of acquired immunity against malaria and highlights the consequences of a multiple infection environment during clinical trials of anti-malaria vaccine candidates.  相似文献   

18.

Background

Antibodies are important in the control of blood stage Plasmodium falciparum infection. It is unclear which antibody responses are responsible for, or even associated with protection, partly due to confounding by heterogeneous exposure. Assessment of response to partially effective antimalarial therapy, which requires the host to assist in clearing parasites, offers an opportunity to measure protection independent of exposure.

Methods

A cohort of children aged 1–10 years in Kampala, Uganda were treated with amodiaquine+sulfadoxine-pyrimethamine for uncomplicated malaria. Serum samples from the time of malaria diagnosis and 14 days later were analyzed for total IgG to 8 P. falciparum antigens using a quantitative indirect ELISA. Associations between antibody levels and risk of treatment failure were estimated using Cox proportional hazard regression.

Results

Higher levels of antibodies to apical membrane antigen 1 (AMA-1), but to none of the other 7 antigens were significantly associated with protection against treatment failure (HR 0.57 per 10-fold increase in antibody level, CI 0.41–0.79, p = 0.001). Protection increased consistently across the entire range of antibody levels.

Conclusions

Measurement of antibody levels to AMA-1 at the time of malaria may offer a quantitative biomarker of blood stage immunity to P. falciparum, a tool which is currently lacking.  相似文献   

19.

Background

Protective immunity to malaria is acquired after repeated infections in endemic areas. Asymptomatic multiclonal P. falciparum infections are common and may predict host protection. Here, we have investigated the effect of clearing asymptomatic infections on the risk of clinical malaria.

Methods

Malaria episodes were continuously monitored in 405 children (1–6 years) in an area of moderate transmission, coastal Kenya. Blood samples collected on four occasions were assessed by genotyping the polymorphic P. falciparum merozoite surface protein 2 using fluorescent PCR and capillary electrophoresis. Following the second survey, asymptomatic infections were cleared with a full course of dihydroartemisinin.

Results

Children who were parasite negative by PCR had a lower risk of subsequent malaria regardless of whether treatment had been given. Children with ≥2 clones had a reduced risk of febrile malaria compared with 1 clone after clearance of asymptomatic infections, but not if asymptomatic infections were not cleared. Multiclonal infection was associated with an increased risk of re-infection after drug treatment. However, among the children who were re-infected, multiclonal infections were associated with a shift from clinical malaria to asymptomatic parasitaemia.

Conclusion

The number of clones was associated with exposure as well as blood stage immunity. These effects were distinguished by clearing asymptomatic infection with anti-malarials. Exposure to multiple P. falciparum infections is associated with protective immunity, but there appears to be an additional effect in untreated multiclonal infections that offsets this protective effect.  相似文献   

20.

Background

Malaria control programs require a detailed understanding of the contemporary spatial distribution of infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010.

Methods

Plasmodium falciparum Annual Parasite Incidence (PfAPI) data (2006–2008) were used to map limits of P. falciparum transmission. A total of 2,581 community blood surveys of P. falciparum parasite rate (PfPR) were identified (1985–2009). After quality control, 2,516 were included into a national database of age-standardized 2–10 year old PfPR data (PfPR2–10) for endemicity mapping. A Bayesian MBG procedure was used to create a predicted surface of PfPR2–10 endemicity with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population count surface.

Results

We estimate 132.8 million people in Indonesia, lived at risk of P. falciparum transmission in 2010. Of these, 70.3% inhabited areas of unstable transmission and 29.7% in stable transmission. Among those exposed to stable risk, the vast majority were at low risk (93.39%) with the reminder at intermediate (6.6%) and high risk (0.01%). More people in western Indonesia lived in unstable rather than stable transmission zones. In contrast, fewer people in eastern Indonesia lived in unstable versus stable transmission areas.

Conclusion

While further feasibility assessments will be required, the immediate prospects for sustained control are good across much of the archipelago and medium term plans to transition to the pre-elimination phase are not unrealistic for P. falciparum. Endemicity in areas of Papua will clearly present the greatest challenge. This P. falciparum endemicity map allows malaria control agencies and their partners to comprehensively assess the region-specific prospects for reaching pre-elimination, monitor and evaluate the effectiveness of future strategies against this 2010 baseline and ultimately improve their evidence-based malaria control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号