首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fry AJ  Palmer MR  Rand DM 《Heredity》2004,93(4):379-389
Maternally inherited Wolbachia bacteria are extremely widespread among insects and their presence is usually associated with parasitic modifications of host fitness. Wolbachia pipientis infects Drosophila melanogaster populations from all continents, but their persistence in this species occurs despite any strong parasitic effects. Here, we have investigated the symbiosis between Wolbachia and D. melanogaster and found that Wolbachia infection can have significant survival and fecundity effects. Relative to uninfected flies, infected females from three fly strains showed enhanced survival or fecundity associated with Wolbachia infection, one strain showed both and one strain responded positively to Wolbachia removal. We found no difference in egg hatch rates (cytoplasmic incompatibility) for crosses between infected males and uninfected females, although there were fecundity differences. Females from this cross consistently produced fewer eggs than infected females and these fecundity differences could promote the spread of infection just like cytoplasmic incompatibility. More surprising, we found that infected females often had the greatest fecundity when mated to uninfected males. This could also promote the spread of Wolbachia infection, though here the fitness benefits would also help to spread infection when Wolbachia are rare. We suggest that variable fitness effects, in both sexes, and which interact strongly with the genetic background of the host, could increase cytoplasmic drive rates in some genotypes and help explain the widespread persistence of Wolbachia bacteria in D. melanogaster populations. These interactions may further explain why many D. melanogaster populations are polymorphic for Wolbachia infection. We discuss our results in the context of host-symbiont co-evolution.  相似文献   

2.
To understand specific symbiotic relationships ensuring stable existing of the bacterium Wolbachia in laboratory strains of Drosophila melanogaster, the imago lifespan and senescence rate, as well as competitiveness, have been evaluated as components of fitness in females from the following laboratory strains: (1) inbred strain 95 infected with Wolbachia; (2) two uninfected strains obtained by tetracycline treatment that were genetically similar to strain 95; and (3) two control, uninfected, wild-type laboratory strains that were used to assess the possible effects of the antibiotic on the studied characters in the absence of Wolbachia. The results have shown that infected females have longer lifespan and competitiveness than females with the same genotype uninfected with Wolbachia. The increase in the senescence and mortality rates with age was also slower in infected females. It is noteworthy that tetracycline does not affect the lifespan of females from the two control, uninfected, wild-type strains. Therefore, the antibiotic is not the cause of the positive changes in fitness that were observed in infected females. The obtained results are the first direct evidence that the relationship s in the Wolbachia-D melanogaster symbiotic system are mutualistic rather than parasitic, at least in micropopulations adapted to laboratory conditions.  相似文献   

3.
Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects.  相似文献   

4.
The maternally inherited bacterium Wolbachia pipientis infects 25-75% of arthropods and manipulates host reproduction to improve its transmission. One way Wolbachia achieves this is by inducing cytoplasmic incompatibility (CI), where crosses between infected males and uninfected females are inviable. Infected males suffer reduced fertility through CI and reduced sperm production. However, Wolbachia induce lower levels of CI in nonvirgin males. We examined the impact of Wolbachia on mating behaviour in male Drosophila melanogaster and D. simulans, which display varying levels of CI, and show that infected males mate at a higher rate than uninfected males in both species. This may serve to increase the spread of Wolbachia, or alternatively, may be a behavioural adaptation employed by males to reduce the level of CI. Mating at high rate restores reproductive compatibility with uninfected females resulting in higher male reproductive success thus promoting male promiscuity. Increased male mating rates also have implications for the transmission of Wolbachia.  相似文献   

5.
On the evolution of cytoplasmic incompatibility in haplodiploid species   总被引:1,自引:0,他引:1  
The most enigmatic sexual manipulation by Wolbachia endosymbionts is cytoplasmic incompatibility (CI): infected males are reproductively incompatible with uninfected females. In this paper, we extend the theory on population dynamics and evolution of CI, with emphasis on haplodiploid species. First, we focus on the problem of the threshold to invasion of the Wolbachia infection in a population. Simulations of the dynamics of infection in small populations show that it does not suffice to assume invasion by drift alone (or demographic "accident"). We propose several promising alternatives that may facilitate invasion of Wolbachia in uninfected populations: sex-ratio effects, meta population structure, and other fitness-compensating effects. Including sex-ratio effects of Wolbachia allows invasion whenever infected females produce more infected daughters than uninfected females produce uninfected daughters. Several studies on haplodiploid species suggest the presence of such sex-ratio effects. The simple metapopulation model we analyzed predicts that, given that infecteds are better "invaders," uninfecteds must be better "colonizers" to maintain coexistence of infected and uninfected patches. This condition seems more feasible for species that suffer local extinction due to predation (or parasitization) than for species that suffer local extinction due to overexploiting their resource(s). Finally, we analyze the evolution of CI in haplodiploids once a population has been infected. Evolution does not depend on the type of CI (female mortality or male production), but hinges solely on decreasing the fitness cost and/or increasing the transmission efficiency. Our models offer new perspectives for increasing our understanding of the population and evolutionary dynamics of CI.  相似文献   

6.
Wolbachia are bacteria that live intracellularly in a wide variety of arthropods. They are maternally inherited and can affect both reproduction and fitness of its host. When infected males mate with uninfected females or females infected by a different Wolbachia strain, there is often a failure of karyogamy, which is usually attributed to cytoplasmic incompatibility (CI). We measured the strength of CI induced by Wolbachia and the fitness effects in three Chinese populations of the brown planthopper Nilaparvata lugens from Hainan, Yunnan, and Guangxi provinces, respectively. No evidence for CI was found in any of the populations, whereas an enhanced fecundity and shortened longevity were observed only in the Hainan population. The infection density was significantly higher in the Hainan population than in the Guangxi population. The Wolbachia strain infecting the three populations appeared to be the same based on the nucleotide sequence of the wsp gene. Therefore, the variable effects of Wolbachia on host fitness seem to be the result of differences in the host genetic background and Wolbachia infection density. The ability of the non-CI-inducing Wolbachia to maintain themselves in their hosts may be attributed to their positive effects on host fecundity and efficient maternal transmission.  相似文献   

7.
Rasgon JL  Scott TW 《Genetics》2003,165(4):2029-2038
Before maternally inherited bacterial symbionts like Wolbachia, which cause cytoplasmic incompatibility (CI; reduced hatch rate) when infected males mate with uninfected females, can be used in a program to control vector-borne diseases it is essential to understand their dynamics of infection in natural arthropod vector populations. Our study had four goals: (1) quantify the number of Wolbachia strains circulating in the California Culex pipiens species complex, (2) investigate Wolbachia infection frequencies and distribution in natural California populations, (3) estimate the parameters that govern Wolbachia spread among Cx. pipiens under laboratory and field conditions, and (4) use these values to estimate equilibrium levels and compare predicted infection prevalence levels to those observed in nature. Strain-specific PCR, wsp gene sequencing, and crossing experiments indicated that a single Wolbachia strain infects Californian Cx. pipiens. Infection frequency was near or at fixation in all populations sampled for 2 years along a >1000-km north-south transect. The combined statewide infection frequency was 99.4%. Incompatible crosses were 100% sterile under laboratory and field conditions. Sterility decreased negligibly with male age in the laboratory. Infection had no significant effect on female fecundity under laboratory or field conditions. Vertical transmission was >99% in the laboratory and approximately 98.6% in the field. Using field data, models predicted that Wolbachia will spread to fixation if infection exceeds an unstable equilibrium point above 1.4%. Our estimates accurately predicted infection frequencies in natural populations. If certain technical hurdles can be overcome, our data indicate that Wolbachia can invade vector populations as part of an applied transgenic strategy for vector-borne disease reduction.  相似文献   

8.
Wolbachia are maternally inherited intracellular bacteria (Rickettsiaceae) that infect a wide range of arthropods and nematodes and that are associated with various reproductive abnormalities in their hosts. In this study, the effects of removal of Wolbachia infection on development, survival, and reproduction of Liposcelis tricolor Badonnel (Psocoptera: Liposcelididae) were investigated in laboratory. The Wolbachia-free strain was obtained by the removal of Wolbachia infection by using 1% rifampicin treatment on the Wolbachia-infected strain (control) for 4 wk, and no Wolbachia gene product was detected in this strain throughout the experiment. The results showed that the removal of Wolbachia infection had negative effects on the fitness of L. tricolor. Compared with the control strain, the Wolbachia-free strain (both in the first [F1] and second [F2] generation) had prolonged developmental times, reduced survivorship of immature stages, and reduced fecundity and longevity, resulting in much smaller rm values. Using rm values, the fitness for Wolbachia-free F1 and F2 relative to the control were calculated as 0.45 and 0.27, respectively. The results of this study further confirmed our previous conclusion that Wolbachia infection have positive effects on fecundity and fertility of L. tricolor, and for optimal reproduction of L. tricolor, Wolbachia must be present in psocids.  相似文献   

9.
Abstract.  Cytoplasmic incompatibility (CI) induced by maternally inherited Wolbachia bacteria is a potential tool for the suppression of insect pest species with appropriate patterns of infection. The Asian tiger mosquito Aedes albopictus (Skuse) (Diptera: Culicidae) is known to be infected by two strains of Wolbachia pipientis Hertig (Rickettsiales: Rickettsiaceae), w Alb A and w Alb B, throughout its geographical distribution. This infection pattern theoretically restricts the application of CI-based control strategies. However, Wolbachia can be horizontally transferred using embryonic microinjection to generate incompatible transfected lines harbouring a single new strain of Wolbachia. In order to assess the feasibility of this approach, the effects of Wolbachia removal on mosquito fitness need to be clearly evaluated as the removal of natural superinfection is an inescapable step of this approach. Previous research has shown that uninfected females, produced by antibiotic treatment, showed a decrease in fitness compared with those infected with Wolbachia. In this study, the effect of Wolbachia removal on male fitness was investigated. Longevity and reproductive potential (mating competitiveness and sperm capacity) were assessed in both laboratory cages and greenhouses. No differences were observed between uninfected and infected males with respect to longevity, mating rate, sperm capacity and mating competitiveness in either laboratory conditions or greenhouses. The preservation of fitness in males of Ae. albopictus deprived of natural Wolbachia infection is discussed in relation to the development of incompatible insect technique suppression strategies. Finally, the potential application of aposymbiotic males in mark–release–recapture studies is suggested.  相似文献   

10.
Many species harbor the incompatibility-inducing microbe Wolbachia, a maternally inherited endoparasite that causes reduced egg hatch in crosses between infected males and uninfected females. Infected females are immune to this effect, which gives them a relative fitness advantage that results in the spread of the infection. The strength of incompatibility, fitness deficits associated with the infection, and transmission rate from mother to offspring largely determine the rate and extent of spread of Wolbachia in a population. We transferred Wolbachia from Drosophila simulans to Drosophila serrata, a novel host, and compared parameter estimates with those from three naturally occurring Drosophila-Wolbachia associations believed to be of different ages. Transfected D. serrata showed strong incompatibility, low transmission efficiency, and an associated fitness deficit, and they would probably be unable to spread in nature. The comparisons generally supported the predicted evolution of a host-Wolbachia association. The parameters peculiar to any given host-Wolbachia association may determine whether the microbial strain can spread in that host.  相似文献   

11.
Many maternally inherited endosymbionts manipulate their host's reproduction in various ways to enhance their own fitness. One such mechanism is male killing (MK), in which sons of infected mothers are killed by the endosymbiont during development. Several hypotheses have been proposed to explain the advantages of MK, including resource reallocation from sons to daughters of infected females, avoidance of inbreeding by infected females, and, if transmission is not purely maternal, the facilitation of horizontal transmission to uninfected females. We tested these hypotheses in Drosophila innubila, a mycophagous species infected with MK Wolbachia. There was no evidence of horizontal transmission in the wild and no evidence Wolbachia reduced levels of inbreeding. Resource reallocation does appear to be operative, as Wolbachia-infected females are slightly larger, on average, than uninfected females, although the selective advantage of larger size is insufficient to account for the frequency of infection in natural populations. Wolbachia-infected females from the wild-although not those from the laboratory-were more fecund than uninfected females. Experimental studies revealed that Wolbachia can boost the fecundity of nutrient-deprived flies and reduce the adverse effect of RNA virus infection. Thus, this MK endosymbiont can provide direct, MK-independent fitness benefits to infected female hosts in addition to possible benefits mediated via MK.  相似文献   

12.
The maternally inherited bacterium Wolbachia pipientis imposes significant fitness costs on its hosts. One such cost is decreased sperm production resulting in reduced fertility of male Drosophila simulans infected with cytoplasmic incompatibility (CI) inducing Wolbachia. We tested the hypothesis that Wolbachia infection affects sperm competitive ability and found that Wolbachia infection is indeed associated with reduced success in sperm competition in non-virgin males. In the second male role, infected males sired 71% of the offspring whereas uninfected males sired 82% of offspring. This is the first empirical evidence indicating that Wolbachia infection deleteriously affects sperm competition and raises the possibility that polyandrous females can utilize differential sperm competitive ability to bias the paternity of broods and avoid the selfish manipulations of Wolbachia. This suggests a relationship between Wolbachia infection and host reproductive strategies. These findings also have important consequences for Wolbachia population dynamics because the transmission advantage of Wolbachia is likely to be undermined by sperm competition.  相似文献   

13.
Wolbachia are maternally inherited bacteria, which typically spread in the host population by inducing cytoplasmic incompatibility (CI). In Drosophila melanogaster, Wolbachia is quite common but CI is variable, with most of the studies reporting low levels of CI. Surveying mitochondrial DNA (mtDNA) variation and infection status in a worldwide D. melanogaster collection, we found that the Wolbachia infection was not randomly distributed among flies with different mtDNA haplotypes. This preferential infection of some mtDNA haplotypes could be caused by a recent spread of mtDNA haplotypes associated with the infection. The comparison of contemporary D. melanogaster samples with lines collected more than 50 years ago shows that indeed one haplotype with a high incidence of Wolbachia infection has increased in frequency. Consistent with this observation, we found that the acquisition of a Wolbachia infection in a population from Crete was accompanied with an almost complete mtDNA replacement, with the Wolbachia-associated haplotype becoming abundant. Although it is difficult to identify the evolutionary forces causing the global increase of wMel, the parallel sweep of Wolbachia and an mtDNA haplotype suggests a fitness advantage of the Wolbachia infection.  相似文献   

14.
Perlman SJ  Kelly SE  Hunter MS 《Genetics》2008,178(2):1003-1011
Bacteria that cause cytoplasmic incompatibility (CI) are perhaps the most widespread parasites of arthropods. CI symbionts cause reproductive failure when infected males mate with females that are either uninfected or infected with a different, incompatible strain. Until recently, CI was known to be caused only by the alpha-proteobacterium Wolbachia. Here we present the first study of the population biology of Cardinium, a recently discovered symbiont in the Bacteroidetes that causes CI in the parasitic wasp Encarsia pergandiella (Hymenoptera: Aphelinidae). Cardinium occurs at high frequency ( approximately 92%) in the field. Using wasps that were recently collected in the field, we measured parameters that are crucial for understanding how CI spreads and is maintained in its host. CI Cardinium exhibits near-perfect rates of maternal transmission, causes a strong reduction in viable offspring in incompatible crosses, and induces a high fecundity cost, with infected females producing 18% fewer offspring in the first 4 days of reproduction. We found no evidence for paternal transmission or horizontal transmission of CI Cardinium through parasitism of an infected conspecific. No evidence for cryptic parthenogenesis in infected females was found, nor was sex allocation influenced by infection. We incorporated our laboratory estimates into a model of CI dynamics. The model predicts a high stable equilibrium, similar to what we observed in the field. Interestingly, our model also predicts a high threshold frequency of CI invasion (20% for males and 24% for females), below which the infection is expected to be lost. We consider how this threshold may be overcome, focusing in particular on the sensitivity of CI models to fecundity costs. Overall our results suggest that the factors governing the dynamics of CI Wolbachia and Cardinium are strikingly similar.  相似文献   

15.
【目的】Wolbachia 是广泛存在于节肢动物和丝状线虫体内的一类共生菌, 能够以多种方式对宿主产生影响。精卵细胞质不亲和(CI)是其引起的最普遍的表型, 即感染Wolbachia的雄性宿主与未感染或感染不同品系的雌性宿主交配后, 不能产生后代或后代极少, 而感染同品系Wolbachia的雌雄宿主交配后则能正常产生后代。我们前期研究发现, 湖北武汉、 云南六库和天津3个地区黑腹果蝇Drosophila melanogaster被Wolbachia感染。本研究旨在明确这3个地区黑腹果蝇中Wolbachia的系统发育关系及其对宿主生殖的影响。【方法】利用Clustal X软件对Wolbachia的wsp基因序列进行比对, 利用MEGA软件构建系统发育树。采用多位点序列分型(MLST)的方法对Wolbachia进行分型。通过区内交配和区之间杂交的方式研究不同地区黑腹果蝇体内Wolbachia 的关系及其对果蝇生殖的影响。【结果】湖北武汉、 云南六库和天津3个地区黑腹果蝇中感染的Wolbachia都是属于A大组的Mel亚群。这3个地区果蝇感染的Wolbachia的序列类型(ST)不同, Wolbachia之间存在一定的差异。湖北武汉和天津果蝇中的Wolbachia能引起强烈的CI表型, 而云南六库果蝇中的Wolbachia引起的CI强度相对较弱。武汉果蝇中Wolbachia不能完全挽救天津果蝇中Wolbachia引起的CI表型, 而天津果蝇中Wolbachia也不能完全挽救武汉果蝇中Wolbachia引起的CI表型。【结论】武汉和天津地区黑腹果蝇中的Wolbachia可能距离较远。Wolbachia的长期共生可能对黑腹果蝇的进化产生了一定的影响, 湖北武汉与云南六库的黑腹果蝇中感染的Wolbachia属于不同的序列类型, 这2个地区的黑腹果蝇已发生了一定的分歧, 产生了一定的生殖隔离。  相似文献   

16.
A A Hoffmann  M Hercus  H Dagher 《Genetics》1998,148(1):221-231
Field populations of Drosophila melanogaster are often infected with Wolbachia, a vertically transmitted microorganism. Under laboratory conditions the infection causes partial incompatibility in crosses between infected males and uninfected females. Here we examine factors influencing the distribution of the infection in natural populations. We show that the level of incompatibility under field conditions was much weaker than in the laboratory. The infection was not transmitted with complete fidelity under field conditions, while field males did not transmit the infection to uninfected females and Wolbachia did not influence sperm competition. There was no association between field fitness as measured by fluctuating asymmetry and the infection status of adults. Infected field females were smaller than uninfecteds in some collections from a subtropical location, but not in other collections from the same location. Laboratory cage studies showed that the infection did not change in frequency when populations were maintained at a low larval density, but it decreased in frequency at a high larval density. Monitoring of infection frequencies in natural populations indicated stable frequencies in some populations but marked fluctuations in others. Simple models suggest that the infection probably provides a fitness benefit for the host in order to persist in populations. The exact nature of this benefit remains elusive.  相似文献   

17.
Cytoplasmic incompatibility (CI) allows Wolbachia to invade hosts populations by specifically inducing sterility in crosses between infected males and uninfected females. In some species, non-CI inducing Wolbachia, that are thought to derive from CI-inducing ancestors, are common. In theory, the maintenance of such infections is not possible unless the bacterium is perfectly transmitted to offspring--and/or provides a fitness benefit to infected females. The present study aims to test this view by investigating a population of Drosophila yakuba from Gabon, West Africa. We did not find any evidence for CI using wild caught females. Infected females from the field transmitted the infection to 100% of their offspring. A positive effect on female fecundity was observed one generation after collecting, but this was not retrieved five generations later, using additional lines. Similarly, the presence of Wolbachia was found to affect mating behaviour, but the results of two experiments realized five generations apart were not consistent. Finally, Wolbachia was not found to affect sex ratio. Overall, our results would suggest that Wolbachia behaves like a neutral or nearly neutral trait in this species, and is maintained in the host by perfect maternal transmission.  相似文献   

18.
Endosymbiotic bacteria in the genus Wolbachia have been linked to several types of reproductive parasitism, which enhance their own transmission, while their direct effects on the host vary from beneficial to neutral or detrimental. Here, we report negative effects of infection on immunity-related traits of Drosophila simulans and the parasitoid wasp Leptopilina heterotoma. Infected D. simulans showed a reduced ability to encapsulate parasitoid eggs, compared to a tetracycline-treated, bacterium-free line. Challenging the two lines with a fungal pathogen, Beauveria bassiana, on the other hand, revealed no differences in survival. Moreover, elimination of Wolbachia was beneficial for the parasitoid wasp, as eggs laid by uninfected females suffered significantly lower encapsulation rates. We discuss possible origins of these fitness costs and their implications for infection dynamics and the interactions between host species.  相似文献   

19.
Wolbachia pipientis is a bacterium that induces cytoplasmic incompatibility (CI), the phenomenon in which infected males are reproductively incompatible with uninfected females. CI spreads in a population of hosts because it reduces the fitness of uninfected females relative to infected females. CI encompasses two steps: modification (mod) of sperm of infected males and rescuing (resc) of these chromosomes by Wolbachia in the egg. Infections associated with CI have mod+ resa+ phenotypes. However, mod- resc+ phenotypes also exist; these do not result in CI. Assuming mod/resc phenotypes are properties of the symbiont, theory predicts that mod- resc+ infections can only spread in a host population where a mod+ resc+ infection already occurs. A mod- resc+ infection spreads if the cost it imposes on the infected females is lower than the cost inflicted by the resident (mod+ resc+) infection. Furthermore, introduction of a mod- Wolbachia eventually drives infection to extinction. The uninfected population that results can be recolonized by a CI-causing Wolbachia. Here, we investigated whether variability for induction of CI was present in two Tetranychus urticae populations. In one population all isofemale lines tested were mod-. In the other, mod+ resc+ and mod- resc+ isofemale lines coexisted. We found no evidence for a cost difference to females expressing either type (mod-/-). Infections in the two populations could not be distinguished based on sequences of two Wolbachia genes. We consider the possibility that mod- is a host effect through a population dynamics model. A mod- host allele leads to infection extinction in the absence of fecundity differences. Furthermore, the uninfected population that results is immune to reestablishment of the (same) CI-causing Wolbachia.  相似文献   

20.
Wolbachia are obligate, maternally inherited, intracellular bacteria that infect numerous insects and other invertebrates. Wolbachia infections have evolved multiple mechanisms to manipulate host reproduction and facilitate invasion of naive host populations. One such mechanism is cytoplasmic incompatibility (CI) that occurs in many insect species, including Aedes albopictus (Asian tiger mosquito). The multiple Wolbachia infections that occur naturally in A. albopictus make this mosquito a useful system in which to study CI. Here, experiments employ mosquito strains that have been introgressed to provide genetically similar strains that harbor differing Wolbachia infection types. Cytoplasmic incompatibility levels, host longevity, egg hatch rates, and fecundity are examined. Crossing results demonstrate a pattern of additive unidirectional cytoplasmic incompatibility. Furthermore, relative to uninfected females, infected females are at a reproductive advantage due to both cytoplasmic incompatibility and a fitness increase associated with Wolbachia infection. In contrast, no fitness difference was observed in comparisons of single- and superinfected females. We discuss the observed results in regard to the evolution of the Wolbachia/A. albopictus symbiosis and the observed pattern of Wolbachia infection in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号