首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to ‘Pv-fam-a’ family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle.  相似文献   

2.
Tryptophan-rich antigens play important role in host-parasite interaction. One of the Plasmodium vivax tryptophan-rich antigens called PvTRAg33.5 had earlier been shown to be predominantly of alpha helical in nature with multidomain structure, induced immune responses in humans, binds to host erythrocytes, and its sequence is highly conserved in the parasite population. In the present study, we divided this protein into three different parts i.e. N-terminal (amino acid position 24–106), middle (amino acid position 107–192), and C-terminal region (amino acid position 185–275) and determined the erythrocyte binding activity of these fragments. This binding activity was retained by the middle and C-terminal fragments covering 107 to 275 amino acid region of the PvTRAg33.5 protein. Eight non-overlapping peptides covering this 107 to 275 amino acid region were then synthesized and tested for their erythrocyte binding activity to further define the binding domains. Only two peptides, peptide P4 (at 171–191 amino acid position) and peptide P8 (at 255–275 amino acid position), were found to contain the erythrocyte binding activity. Competition assay revealed that each peptide recognizes its own erythrocyte receptor. These two peptides were found to be located on two parallel helices at one end of the protein in the modelled structure and could be exposed on its surface to form a suitable site for protein-protein interaction. Natural antibodies present in the sera of the P. vivax exposed individuals or the polyclonal rabbit antibodies against this protein were able to inhibit the erythrocyte binding activity of PvTRAg33.5, its fragments, and these two synthetic peptides P4 and P8. Further studies on receptor-ligand interaction might lead to the development of the therapeutic reagent.  相似文献   

3.
Need for malaria vaccine necessitates the characterization of potential antigens of the Plasmodium parasite. Recently, we have identified several Plasmodium vivax tryptophan-rich antigens (PvTRAgs). Here, we describe the immunological characterization of hitherto undescribed two such antigens PvTRAg 35.2 and PvTRAg 80.6 which are respective homologue of Plasmodium falciparum merozoite associated tryptophan-rich antigen (PfMaTrA) and P. falciparum tryptophan and threonine rich antigen (PfTryThrA) involved in erythrocyte invasion. Each of the pvtrag genes is comprised of two exons where exon 2 encodes for major part of the protein. PvTRAg 35.2 and PvTRAg 80.6 showed 97.06% and 94.12% (n = 34) seropositivity rates, and 92.3% (n = 13) and 100% (n = 29) lymphoproliferative responses, respectively, among P. vivax exposed individuals. Geometric mean values of IL-12, IFN-γ, TNF-α, IL-4 and IL-10 in PBMC culture supernatants of P. vivax exposed individuals were 182.02, 60.3, 62.84, 196.01 and 177.17 pg/ml against PvTRAg 35.2 and 185.27, 58.15, 64.56, 142.01 and 157.2 pg/ml against PvTRAg 80.6 showing mixed immune response with distinct biased towards anti-inflammatory Th2 phenotype. The pvtrag 35.2 gene was highly conserved in the parasite population whereas pvtrag 80.6 showed minor variations in the N-terminal region but highly conserved in the C-terminal region containing tryptophan-rich domain.  相似文献   

4.
5.
6.
We have isolated and sequenced a cDNA clone which contains the entire coding sequence of the precursor to a subunit of wheat phosphoribulokinase (PRKase). (The enzyme is a homodimer). The cDNA contains 1533 bp and has an open reading frame of 1212 nucleotides. This encodes a protein with an amino-terminal transit sequence of 53 amino acids, while the part that forms the mature protein contains 351 amino acids and has a molecular weight of 39,200 daltons. A comparison of the wheat amino acid sequence with that already known for the mature protein of spinach reveals that there are identical residues in 86% of the positions but their transit peptides differ substantially from one another. The mature wheat and spinach proteins are identical in a segment of over 50 amino acids near the amino-terminus which is the region believed to be involved in ATP binding and in regulation by light of the catalytic activity of the enzyme. We further demonstrate that the expression of PRKase mRNA in wheat leaves is regulated in a developmental, tissue-specific and light dependent manner. We also show that the light-induced increase in the steady-state levels of this mRNA is dependent on the developmental stage of the leaf.  相似文献   

7.
We have cloned a DNA that is complementary to the messenger RNA that encodes porcine pancreatic elastase 1 from pancreas using rat pancreatic elastase 1 cDNA as a probe. This complementary DNA contains the entire protein coding region of 798 nucleotides which encodes an elastase of 266 amino acids, and 22 and 136 nucleotides of the 5' and 3'-untranslated sequences. When this deduced amino acid sequence was compared with known amino acid sequences, a carboxy-terminal 240 amino acids long peptide was found to be identical with a mature form of porcine pancreatic elastase 1, except for two amino acids. The porcine enzyme contains the same number of amino acid residues as the rat enzyme, and their amino acid sequences are 85% homologous. Taking the above findings together, we conclude that the cloned cDNA encodes a mature enzyme of 240 amino acids including a leader and activation peptide of 26 amino acids. We expressed the cloned porcine pancreatic elastase 1 cDNA in E. coli as a lac-fused protein. The resulting fused protein showed enzymatic activity and immunoreactivity toward anti-elastase serum.  相似文献   

8.
We have cloned a DNA that is complementary to the messenger RNA that encodes human pancreatic elastase 2 from a human pancreatic cDNA library using a cloned cDNA for rat pancreatic elastase 2 messenger RNA. This complementary DNA contains the entire protein coding region of 807 nucleotides which encodes preproelastase of 269 amino acids, and 4 and 82 nucleotides of the 5'- and 3'-untranslated sequences, respectively. When this deduced amino acid sequence was compared with known amino acid sequences it showed 82% homology with rat pancreatic elastase 2. This deduced sequence also contains a 16-amino-acid peptide identical with the N-terminal sequence determined for native human pancreatic proelastase 2. Taking the above findings together, we conclude that the cloned cDNA encodes a mature enzyme of 241 amino acids including 16 and 12 amino acids for a signal peptide and an activation peptide, respectively. Moreover, the predicted key amino acid residues involved in determining the substrate specificity of mammalian pancreatic elastase 2 are retained in the human enzyme. Cloned human pancreatic elastase 2 cDNA was expressed in E. coli as a mature and pro-form protein. Both resulting proteins showed immunoreactivity toward anti-elastase serum and enzymatic activity. We have also cloned and sequenced a porcine pancreatic elastase 2 cDNA.  相似文献   

9.
Plasmodium vivax is a very common but non-cultivable malaria parasite affecting large human population in tropical world. To develop therapeutic reagents for this malaria, the parasite molecules involved in host-parasite interaction need to be investigated as they form effective vaccine or drug targets. We have investigated here the erythrocyte binding activity of a group of 15 different Plasmodium vivax tryptophan rich antigens (PvTRAgs). Only six of them, named PvTRAg, PvTRAg38, PvTRAg33.5, PvTRAg35.2 PvTRAg69.4 and PvATRAg74, showed binding to host erythrocytes. That the PvTRAgs binding to host erythrocytes was specific was evident from the competitive inhibition and saturation kinetics results. The erythrocyte receptors for these six PvTRAgs were resistant to trypsin and neuraminidase. These receptors were also chymotrypsin resistant except the receptors for PvTRAg38 and PvATRAg74 which were partially sensitive to this enzyme. The cross-competition studies showed that the chymotrypsin resistant RBC receptor for each of these two proteins was different. Altogether, there seems to be three RBC receptors for these six PvTRAgs and each PvTRAg has two RBC receptors. Both RBC receptors for PvTRAg, PvTRAg69.4, PvTRAg33.5, and PvTRAg35.2 were common to all these four proteins. These four PvTRAgs also shared one of their RBC receptors with PvTRAg38 as well as with PvATRAg74. The erythrocyte binding activity of these six PvTRAgs was inhibited by the respective rabbit polyclonal antibodies as well as by the natural antibodies produced by the P. vivax exposed individuals. It is concluded that only selective few PvTRAgs show erythrocyte binding activity involving different receptor molecules which can be blocked by the natural antibodies. Further studies on these receptor and ligands may lead to the development of therapeutic reagents for P. vivax malaria.  相似文献   

10.
Pulse radiolysis of selenium dioxide in aqueous solution has shown the presence of three selenite radicals in acid-base equilibrium within well defined pH ranges: (formula; see text) The selenite radicals react selectively with amino acids, preferentially with the aromatic ones in the order tryptophan greater than tyrosine greater than histidine, independently of the acid-base structure of the radical. Kinetic and spectroscopic data on the reaction of selenite radicals with some proteins and parallel inactivation studies generally reflect knowledge on the amino acid residues mainly involved in the radical attack. The investigations at different pH values on the reactivity of selenite radicals with amino acids and proteins and on the transient spectra of the reaction products exhibit different behaviour for the various acid-base structures of the selenite radicals, reflecting the influence of particular ionizable groups in the reacting molecules and the structure modifications at the level of proteins.  相似文献   

11.
12.
13.
The gene for a novel extracellular metalloprotease was cloned, and its nucleotide sequence was determined. The gene (mpr) encodes a primary product of 313 amino acids that has little similarity to other known Bacillus proteases. The amino acid sequence of the mature protease was preceded by a signal sequence of approximately 34 amino acids and a pro sequence of 58 amino acids. Four cysteine residues were found in the deduced amino acid sequence of the mature protein, indicating the possible presence of disulfide bonds. The mpr gene mapped in the cysA-aroI region of the chromosome and was not required for growth or sporulation.  相似文献   

14.
Histone H1-like amino acid extensions have been described at the amino terminus of Drosophila RpL22 and RpL23a, and at the carboxyl terminus of mosquito ribosomal protein RpS6. An in silico search suggested that RpL23a, but not RpL22, in Anopheles gambiae has an amino-terminal extension. Because low complexity amino acid extensions are not common on eukaryotic ribosomal proteins, and their functions are unknown, we cloned cDNAs encoding RpL23a from Aedes albopictus and Anopheles stephensi mosquito cell lines. RpL23a proteins in Aedes and Anopheles mosquitoes are rich in lysine (approximately 25%), alanine (approximately 21%), and proline (approximately 8%), have a mass of approximately 40 kDa, a pI of 11.4 to 11.5, and contain an N-terminal extension of approximately 260 amino acid residues. The N-terminal extension in mosquito RpL23a is about 100 amino acids longer than that in the Drosophila RpL23a homolog, and contains several repeated amino acid motifs. Analysis of exon-intron organization in the An. gambiae and in D. melanogaster genes suggests that a short first exon encodes a series of 11 amino acid residues conserved in RpL23a proteins from Drosophila, mosquitoes, and the moth, Bombyx mori. The histone H1-like sequence in RpL23a is encoded entirely within the second exon. The C-terminal 126 amino acid residues of the RpL23a protein, encoded by exon 3 in Drosophila, and by exons 3 and 4 in Anopheles gambiae, are well conserved, and correspond to Escherichia coli RpL23 with the addition of the eukaryotic N-terminal nuclear localization sequence. Sequence comparisons indicate that the histone H1-like extensions on mosquito RpS6 and RpL23a have evolved independently of each other, and of histone H1 proteins.  相似文献   

15.
We present the nucleotide sequence and the deduced amino acid sequence of a cDNA clone that encodes the entire precursor of the 37-kDa inner envelope membrane protein from spinach chloroplasts. The precursor protein consists of 344 amino acids (Mr 38,976). In vitro processing followed by radiosequence analysis of the in vitro transcribed and translated precursor protein revealed that its transit peptide consists of only 21 amino acid residues. The transit peptide has the potential to form an amphiphilic alpha-helix with a strong hydrophobic moment. It is speculated that this structural element represents an ancestral envelope-targeting domain. The in vitro synthesized precursor protein is directed to the chloroplasts and it is inserted into the envelope membrane in an ATP-dependent manner. The mature protein (323 amino acid residues, Mr 36,830) has a moderate hydrophobicity and contains only one membrane-spanning segment which is located at the C-terminus and possibly anchors the protein within the envelope membrane.  相似文献   

16.
17.
The fructose-1,6-bisphosphate aldolase gene of Drosophila melanogaster contains three divergent copies of an evolutionarily conserved 3' exon. Two mRNAs encoding aldolase contain three exons and differ only in the poly(A) site. The first exon is small and noncoding. The second encodes the first 332 amino acids, which form the catalytic domain, and is homologous to exons 2 through 8 of vertebrates. The third exon encodes the last 29 amino acids, thought to control substrate specificity, and is homologous to vertebrate exon 9. A third mRNA substitutes a different 3' exon (4a) for exon 3 and encodes a protein very similar to aldolase. A fourth mRNA begins at a different promoter and shares the second exon with the aldolase messages. However, two exons, 3a and 4a, together substitute for exon 3. Like exon 4a, exon 3a is homologous to terminal aldolase exons. The exon 3a-4a junction is such that exon 4a would be translated in a frame different from that which would produce a protein with similarity to aldolase. The putative proteins encoded by the third and fourth mRNAs are likely to be aldolases with altered substrate specificities, illustrating alternate use of duplicated and diverged exons as an evolutionary mechanism for adaptation of enzymatic activities.  相似文献   

18.
Summary The outer shell of translucent keratin has been dissected from the claws of the lizard,Varanus gouldii. It is free of calcium and hydroxyproline, in contrast to the fibrous support, and contains proteins rich in glycine (28 residues %) and half-cystine (13%). These proteins have been obtained in soluble form by treatment with 2-mercaptoethanol in 8M urea at pH 11 followed by alkylation with iodoacetate to giveS-carboxymethyl kerateines. The three major components resolved by SDS polyacrylamide gel electrophoresis have been isolated by fractional precipitation with ammonium sulfate followed by chromatography on DEAE-cellulose or Sephadex. Two of the components, low in tryptophan content, appear to be homologous and are relatively homogeneous with respect to both size and charge whereas the third, a tryptophan-rich material, appears to contain about 20 different molecular species as judged by gel electrophoresis in urea at pH 8.9. The molecular weights of two of the isolated omponents (the tryptophan-rich and the major of the two tryptophanpoor components) are about 13000 as determined by equilibrium ultracentrifugation studies.The major lizard claw proteins are therefore similar in size and glycine content to the proteins of avian beak and claw but differ in containing more cystine and less tyrosine. On the other hand, the reptilian proteins resemble the mammalian high-tyrosine proteins (Type II) in cystine content and overall amino acid composition, but differ in size with the lizard proteins being larger. It is suggested however that they are unlikely to be homologous.  相似文献   

19.
Summary The structural gene entC3, which encodes staphylococcal enterotoxin C3 was cloned from the genome of Staphylococcus aureus FRI-913 and sequenced. The primary amino acid sequence of the toxin was deduced from the nucleotide sequence data. entC3 contains 801 by and encodes a precursor protein of 266 amino acids. Glutamic acid was found to be the N-terminus of mature enterotoxin C3. Thus, the first 27 residues of the toxin precursor comprise the signal peptide, and the mature toxin contains 239 amino acids with a molecular weight of 27 563 daltons. Enterotoxin C3 differs from enterotoxin C2 by four amino acids and from enterotoxin C1 by nine residues. The 167 C-terminal residues of the three toxins are identical, except for one conservative amino acid substitution in enterotoxin C3. The degree of immunological relatedness among the three Type C enterotoxins is proportional to their molecular relatedness. This study also provides evidence that the N-termini of Type C enterotoxins determine subtype-specific antigenic epitopes, while more conserved C-terminal regions determine biological properties and cross-reactive antigenic epitopes shared with other pyrogenic toxins.  相似文献   

20.
Mutations were introduced into the ectodomain of the human immunodeficiency virus type 1 (HIV-1) transmembrane envelope glycoprotein, gp41, within a region immediately adjacent to the membrane-spanning domain. This region, which is predicted to form an α-helix, contains highly conserved hydrophobic residues and is unusually rich in tryptophan residues. In addition, this domain overlaps the epitope of a neutralizing monoclonal antibody, 2F5, as well as the sequence corresponding to a peptide, DP-178, shown to potently neutralize virus. Site-directed mutagenesis was used to create deletions, substitutions, and insertions centered around a stretch of 17 hydrophobic and uncharged amino acids (residues 666 to 682 of the HXB2 strain of HIV-1) in order to determine the role of this region in the maturation and function of the envelope glycoprotein. Deletion of the entire stretch of 17 amino acids abrogated the ability of the envelope glycoprotein to mediate both cell-cell fusion and virus entry without affecting the normal maturation, transport, or CD4-binding ability of the protein. This phenotype was also demonstrated by substituting alanine residues for three of the five tryptophan residues within this sequence. Smaller deletions, as well as multiple amino acid substitutions, were also found to inhibit but not block cell-cell fusion. These results demonstrate the crucial role of a tryptophan-rich motif in gp41 during a post-CD4-binding step of glycoprotein-mediated fusion. The basis for the invariant nature of the tryptophans, however, appears to be at the level of glycoprotein incorporation into virions. Even the substitution of phenylalanine for a single tryptophan residue was sufficient to reduce Env incorporation and drop the efficiency of virus entry approximately 10-fold, despite the fact that the same mutation had no significant effect on syncytium formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号