首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eighteen endogenous opioid peptides, all containing the sequence of either Met5- or Leu5-enkephalin, were tested for their ability to modify nicotine-induced secretion from bovine adrenal chromaffin cells. ATP released from suspensions of freshly isolated cells was measured with the luciferin-luciferase bioluminescence method as an index of secretion. None of the peptides affected 5 microM nicotine-induced ATP release at 10 nM. Three peptides inhibited secretion at 5 microM: dynorphin1-13, dynorphin1-9, and rimorphin inhibited by 65%, 37%, and 29% respectively. Use of peptidase inhibitors (bestatin, thiorphan, bacitracin, or 1,10-phenanthroline) did not result in any of the other peptides showing potent actions on the nicotinic response, although bestatin and thiorphan did enhance the inhibitory actions of dynorphin1-13 and dynorphin1-9 by 20-30%. Nicotine-induced secretion of endogenous catecholamines from bovine chromaffin cells cultured for 3 days was also studied to assess any selective actions of the peptides on adrenaline or noradrenaline cell types. Dynorphin1-13 was 1,000-fold more potent than Leu5-enkephalin at inhibiting endogenous catecholamine secretion. Dynorphin1-13 was slightly more potent at inhibiting noradrenaline release than adrenaline release whereas Leu5-enkephalin showed the opposite selectivity. The structure-activity relationships of opioid peptide actions on the chromaffin cell nicotinic response are discussed in relation to the properties of the adrenal opioid binding sites.  相似文献   

2.
Metabolism of opioid peptides by cerebral microvascular aminopeptidase M   总被引:2,自引:0,他引:2  
Aminopeptidase M (EC 3.4.11.2), which can degrade low molecular weight opioid peptides, has been reported in both peripheral vasculature and in the CNS. Thus, we have studied the metabolism of opioid peptides by membrane-bound aminopeptidase M derived from cerebral microvessels of hog and rabbit. Both hog and rabbit microvessels were found to contain membrane-bound aminopeptidase M. At neutral pH, microvessels preferentially degraded low molecular weight opioid peptides by hydrolysis of the N-terminal Tyr1-Gly2 bond. Degradation was inhibited by amastatin (I50 = 0.2 microM) and bestatin (10 microM), but not by a number of other peptidase inhibitors including captopril and phosphoramidon. Rates of degradation were highest for the shorter peptides (Met5- and Leu5-enkephalin) whereas beta-endorphin was nearly completely resistant to N-terminal hydrolysis. Km values for the microvascular aminopeptidase also decreased significantly with increasing peptide length (Km = 91.3 +/- 4.9 and 28.9 +/- 3.5 microM for Met5-enkephalin and Met5-enkephalin-Arg6-Phe7, respectively). Peptides known to be present within or in close proximity to cerebral vessels (e.g., neurotensin and substance P) competitively inhibited enkephalin degradation (Ki = 20.4 +/- 2.5 and 7.9 +/- 1.6 microM, respectively). These data suggest that cerebral microvascular aminopeptidase M may play a role in vivo in modulating peptide-mediated local cerebral blood flow, and in preventing circulating enkephalins from crossing the blood-brain barrier.  相似文献   

3.
Rat brain neutral endopeptidase ("Enkephalinase") was shown to hydrolyze a series of fluorogenic substrates of the general structure 2-aminobenzoyl-(amino acid)n- leucylalanylglycine -4- nitrobenzylamide . The hydrolysis of these substrates was competitively inhibited by Leu5-enkephalin, demonstrating that these are indeed substrates for the rat brain neutral endopeptidase. Cleavage of the fluorogenic substrates yielded leucylalanylglycine -4- nitrobenzylamide as a common product. In addition, a series of inhibitors previously shown to inhibit thermolysin-like enzymes inhibited the hydrolysis of both Leu5-enkephalin and the synthetic substrates. The results of this study (a) demonstrate that the enkephalin-degrading endopeptidase is similar in specificity to thermolysin, (b) provide a continuous sensitive assay system for the enzyme, and (c) point out the potential use of this substrate class for probing the specificity of the enzyme.  相似文献   

4.
Since both aminopeptidases and angiotensin I-converting enzyme are reported to degrade circulating enkephalins, we have examined the degradation of low-molecular-weight opioid peptides by a vascular plasma membrane-enriched fraction previously shown to contain both angiotensin I-converting enzyme (EC 3.4.15.1) and aminopeptidase M (EC 3.4.11.2). Except for an enkephalin analog resistant to amino-terminal hydrolysis, [D-Ala2]enkephalin, the purified vascular plasma membrane preferentially degraded low-molecular-weight opioids by hydrolysis of the N-terminal Tyr-1--Gly-2 bond. Enkephalin degradation was optimal at pH 7.0 and was inhibited by the aminopeptidase inhibitors amastatin (I50 = 0.08 microM), bestatin (9.0 microM) and puromycin (80 microM). Maximal rates of hydrolysis, calculated per mg plasma membrane protein, were highest for the shorter peptides (18.3, 15.6 and 16.6 nmol/min per mg for Met5-enkephalin, Leu5-enkephalin and Leu5-enkephalin-Arg6, respectively) and decreased with increasing peptide length (0.7 nmol/min per mg for dynorphin (1-13)). No significant hydrolysis of beta- and gamma-endorphin was detected. Km values decreased significantly with increasing peptide length (Km = 72.9 +/- 2.7, 43.6 +/- 4.7 and 21.4 +/- 0.9 microM for Met5-enkephalin, Leu5-enkephalin-Arg6 and Met5-enkephalin-Arg6-Phe7, respectively). However, no further decreases were seen with even larger sequences, i.e., dynorphin(1-13). Other peptides hydrolyzed by the plasma membrane aminopeptidase (angiotensin III, kallidin and hepta(5-11)-substance P) inhibited enkephalin degradation in a competitive manner. Thus, localization, specificity and kinetic data are consistent with identification of aminopeptidase M as a vascular enzyme with the capacity to differentially metabolize low-molecular-weight opioid peptides within the microenvironment of vascular cell surface receptors. Such differential metabolism may play a role in modulating the vascular effects of peripheral opioids.  相似文献   

5.
An adrenomedullary protease capable of generating Met5-enkephalin from endogenous precursor(s) has been purified 1,000-fold using affinity chromatography in combination with gel filtration. This trypsin-like enzyme has an apparent molecular weight of 20,000 daltons by gel filtration. The reactivity of the enzyme toward several fluorogenic peptides, Peptides E and F, and the heptapeptides, Met5-enkephalin-Arg6-Phe7 and Met5-enkephalin-Arg6-Arg7, was examined. The two heptapeptides and the fluorogenic compounds were poor substrates for the adrenal enzyme; in contrast, Peptides E and F were cleaved. The low molecular weight products of Peptide F digestion were identified by HPLC as Arg1-Met6-enkephalin, Met5-enkephalin, and Met5-enkephalin-Lys6, while digestion of Peptide E resulted in the production of Leu5-enkephalin and Met5-enkephalin-Arg6-Arg7. [3H]-beta m-Lipotropin was not hydrolyzed by the adrenal enzyme. These results indicate that this adreno-medullary protease is capable of cleaving adrenal opioid peptides at the paired basic sites and thus represents a possible candidate for a proenkephalin-converting enzyme.  相似文献   

6.
We determined if any naturally occurring peptides could act as substrates or inhibitors of the bifunctional, Zn2+ metalloenzyme LTA4 hydrolase/aminopeptidase (E.C.3.3.2.6). Several opioid peptides including met5-enkephalin, leu5-enkephalin, dynorphin1-6, dynorphin1-7, and dynorphin1-8 competitively inhibited the hydrolysis of L-proline-p-nitroanilide by leukotriene A4 hydrolase/aminopeptidase, consistent with an interaction at its active site. The enzyme catalyzed the N-terminal hydrolysis of tyrosine from met5-enkephalin with Km = 450 +/- 58 microM and Vmax = 4.9 +/- 0.6 nmol-hr-1-ug-1 and from leu5-enkephalin with Km = 387 +/- 90 microM and Vmax = 6.2 +/- 2.5 nmol-hr-1-ug-1. Bestatin, captopril and carnosine inhibited the hydrolysis of the enkephalins. It is noteworthy that the bifunctional catalytic traits of this enzyme include generation of an hyperalgesic substance, LTB4, and inactivation of analgesic opioid peptides.  相似文献   

7.
Skidgel RA  Erdös EG 《Peptides》2004,25(3):521-525
Our investigations started when synthetic bradykinin became available and we could characterize two enzymes that cleaved it: kininase I or plasma carboxypeptidase N and kininase II, a peptidyl dipeptide hydrolase that we later found to be identical with the angiotensin I converting enzyme (ACE). When we noticed that ACE can cleave peptides without a free C-terminal carboxyl group (e.g., with a C-terminal nitrobenzylamine), we investigated inactivation of substance P, which has a C-terminal Met(11)-NH(2). The studies were extended to the hydrolysis of the neuropeptide, neurotensin and to compare hydrolysis of the same peptides by neprilysin (neutral endopeptidase 24.11, CD10, NEP). Our publication in 1984 dealt with ACE and NEP purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln(6)-Phe(7), Phe(7)[see text]-Phe(8), and Gly(9)-Leu(10) and neurotensin (NT) at Pro(10)-Tyr(11) and Tyr(11)-Ile(12). Purified ACE also rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe(8)-Gly(9) and Gly(9)-Leu(10) to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl(-) dependent and inhibited by captopril. ACE released only dipeptide from SP free acid. ACE hydrolyzed NT at Tyr(11)-Ile(12) to release Ile(12)-Leu(13). Then peptide substrates were used to inhibit ACE hydrolyzing Fa-Phe-Gly-Gly and NEP cleaving Leu(5)-enkephalin. The K(i) values in microM were as follows: for ACE, bradykinin = 0.4, angiotensin I = 4, SP = 25, SP free acid = 2, NT = 14, and Met(5)-enkephalin = 450, and for NEP, bradykinin = 162, angiotensin I = 36, SP = 190, NT = 39, Met(5)-enkephalin = 22. These studies showed that ACE and NEP, two enzymes widely distributed in the body, are involved in the metabolism of SP and NT. Below we briefly survey how NEP and ACE in two decades have gained the reputation as very important factors in health and disease. This is due to the discovery of more endogenous substrates of the enzymes and to the very broad and beneficial therapeutic applications of ACE inhibitors.  相似文献   

8.
Neutral endopeptidase 24.11 is rapidly inactivated by N-bromoacetyl-D-leucylglycine in a reaction which follows first-order kinetics at pH 8 and 37 degrees C. The concentration dependence of inactivation revealed saturation kinetics with an apparent Ki of 10 mM and kappa inact of 0.4 min-1 at saturating inhibitor concentration. Enzyme can be protected from inactivation by either the substrate Leu5-enkephalin or the competitive inhibitors Phe-Gly or Phe-Ala. Inactivation of enzyme by N-bromo-[14C]acetyl-D-leucylglycine proceeds with the incorporation of a stoichiometric amount of labeled inhibitor. Tryptic digestion of the radioactively labeled enzyme followed by high performance liquid chromatography allowed the isolation of a modified peptide with the sequence T-D-V-H-S-P-G-N-F-R in which histidine (His704) is the modified residue. Site-directed mutagenesis was used to generate a mutant form of the enzyme in which histidine 704 was converted to a glutamine residue. This mutant enzyme retained less than 0.1% of the activity of the native enzyme. These results demonstrate that His704 is at the active site of neutral endopeptidase 24.11 and suggest a catalytic role for this residue.  相似文献   

9.
The amides of Leu5-enkephalin, Met5-enkephalin, and three analogues, D-Ala2,Leu5-enkephalin, (AcO)Tyr1,Met5-enkephalin, and (AcO)Tyr1,D-Ala2,Met5-enkephalin, have been studied by means of 1H NMR spectroscopy in two different solvent systems: Me2SO-d6 and CDCl3. In the latter solvent the peptides were dissolved as complexes with 18-crown-6-ether, a coronand that binds strongly to the NH3+ groups. The crown ether complexation and the apolar solvent were used to simulate the anionic subsite of the receptor and the hydrophobic environment of the receptor cavity, respectively. The very unusual amide proton chemical shifts and their temperature coefficients suggest the presence of folded conformations in CDCl3 for all peptides, consistent with several models of opioid receptors and with the crystal structure of Leu5-enkephalin. The differences among the proposed cyclic conformations of the five peptides may be correlated, in part, with their different biological activity. All peptides in Me2SO-d6 are characterized by complex mixtures of extended fully solvated conformations.  相似文献   

10.
Brain Endo-Oligopeptidase A, a Putative Enkephalin Converting Enzyme   总被引:6,自引:4,他引:2  
Endo-oligopeptidase A, highly purified from the cytosol fraction of bovine brain by immunoaffinity chromatography, has been characterized as a thiol endopeptidase. This enzyme, known to hydrolyze the Phe5-Ser6 bond of bradykinin and the Arg8-Arg9 bond of neurotensin, has been shown to produce, by a single cleavage, Leu5-enkephalin or Met5-enkephalin from small enkephalin-containing peptides. Enkephalin formation could be inhibited in a concentration-dependent manner by the alternative substrate bradykinin. The optimal substrate size was found to be eight to 13 amino acids, with enkephalin the only product released from precursors in which this sequence is immediately followed by a pair of basic residues. However, the specificity constants (kcat/Km) obtained for endo-oligopeptidase A hydrolysis of bradykinin, neurotensin, and dynorphin B are of the same order, a result indicating that the substrate amino acid sequence is not the only factor determining the cleavage site of this enzyme.  相似文献   

11.
A membrane-bound neutral carboxypeptidase B-like enzyme was solubilized from human placental microvilli with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) and purified to homogeneity by ion-exchange chromatography and affinity chromatography on arginine-Sepharose. It gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent Mr of 62,000 with or without reduction. The enzyme is a glycoprotein as shown by its high affinity for concanavalin A-Sepharose and reduction in mass to 47,600 daltons after chemical deglycosylation. It has a neutral pH optimum, is activated by CoCl2, and inhibited by o-phenanthroline, 2-mercaptomethyl-3-guanidinoethylthiopropanoic acid, or cadmium acetate, indicating it is a metallopeptidase. The enzyme cleaves arginine or lysine from the COOH terminus of synthetic peptides (e.g. Bz-Gly-Arg, Bz-Gly-Lys, Bz-Ala-Lys, dansyl-Ala-Arg, where Bz is benzoyl and dansyl is 5-dimethylaminonaphthalene-1-sulfonyl) as well as from several biologically active substrates: dynorphin A(1-13), Met5-Arg6-enkephalin (Km = 46 microM, kcat = 934 min-1), bradykinin (Km = 16 microM, kcat = 147 min-1), Met5-Lys6-enkephalin (Km = 375 microM, kcat = 663 min-1), and Leu5-Arg6-enkephalin (Km = 63 microM, kcat = 106 min-1). Although the enzyme shares some properties with other carboxypeptidase B-like enzymes, it is structurally, catalytically, and immunologically distinct from pancreatic carboxypeptidase A or B, human plasma carboxypeptidase N, and carboxypeptidase H ("enkephalin convertase"). To denote that the enzyme is membrane-bound, and to distinguish it from other known carboxypeptidases, we propose the name "carboxypeptidase M." Because of its localization on the plasma membrane and optimal activity at neutral pH, carboxypeptidase M could inactivate or modulate the activity of peptide hormones either before or after their interaction with plasma membrane receptors.  相似文献   

12.
Through the development of a new chemical strategy, aminophosphinic peptides containing a pseudoglutamyl residue (Glu Psi(PO2-CH2)Leu-Xaa) in the N-terminal position were synthesized and evaluated as inhibitors of aminopeptidase A (APA). The most potent inhibitor developed in this study, Glu Psi(PO2-CH2)Leu-Ala, displayed a Ki value of 0.8 nM for APA, but was much less effective in blocking aminopeptidase N (APN) (Ki = 31 microM). The critical role of the glutamyl residue in this phosphinic peptide, both in potency and selectivity, is exemplified by the P1 position analogue, Ala Psi(PO2-CH2)Leu-Ala, which exhibited a Ki value of 0.9 microM toward APA but behaved as a rather potent inhibitor of APN (Ki = 25 nM). Glu Psi(PO2-CH2)Leu-Xaa peptides are poor inhibitors of angiotensin converting enzyme (Ki values higher than 1 microM). Depending on the nature of the Xaa residue, the potency of these phosphinic peptides toward neutral endopeptidase 24-11 varied from 50 nM to 3 microM. In view of the in vivo role of APA in the formation of brain angiotensin III, one of the main effector peptides of the renin angiotensin system in the central nervous system, highly potent and selective inhibitors of APA may find important therapeutic applications soon.  相似文献   

13.
I S Zagon  P McLaughlin 《Life sciences》1988,43(16):1313-1318
Endogenous opioid systems (endogenous opioids and their receptors) are known to participate in the regulation of tumor growth. The present study was conducted to examine whether [Met5]-enkephalin influences the growth of transplanted neuroblastoma, and to explore the role of other opioid peptides in carcinogenesis. A/Jax mice were inoculated with 10(6) S20Y cells and received daily injections of [Met5]-enkephalin. Dosages of 0.5 to 30 mg/kg delayed tumor appearance and prolonged survival of these mice; antitumor effects were blocked by concomitant injections of naloxone. Daily administration (10 mg/kg) of [Leu5]-enkephalin had no effect on neurotumor growth. [D-Ala2, D-Leu5]-enkephalin and ethylketocyclazocine, ligands selective for delta and kappa receptors, respectively, also did not influence neuro-oncogenesis. These results demonstrated the potent growth inhibiting effects of the naturally occurring opioid pentapeptide, [Met5]-enkephalin, and substantiate reports identifying and characterizing an opioid receptor (i.e., zeta) for which [Met5]-enkephalin is the most potent ligand.  相似文献   

14.
In our previous study on [Met5]-enkephalin analogues, [Met5]-enkephalin semicarbazide was found as a new enkephalin amide that produces antinociception even in ACE (Angiotensin Converting Enzyme) exposure in vivo. In the present work we examined the corresponding [Leu5]-enkephalin derivatives to confirm the influence of semicarbazide substitution. To prevent the enkephalins biodegradation animals were pretreated with a mixture of peptidase inhibitors. As assessed by tail-flick test no significant difference was detected between the produced antinociception by the [Leu5]-enkephalin derivatives. Based on our results both semicarbazide and ethylamide groups could preserve the provided analgesia after captopril (ACE inhibitor) omission from the peptidase inhibitors mixture. This work confirms that semicarbazide substitution on enkephalins yields ACE resistance antinociceptive peptides, nevertheless it may necessarily not enhance the peptides analgesic potencies.  相似文献   

15.
The backbone conformation of the two opioid pentapeptides Leu5-enkephalin and Met5-enkephalin was studied by the technique of resolution-enhanced infrared spectroscopy. In aqueous solution, the conformation-sensitive amide I bands of the two peptides are identical. The positions of these bands are consistent with the view that in aqueous solution both enkephalins exist as an ensemble of largely unfolded conformers. Interaction of Leu5- and Met5-enkephalins with bilayer membranes of ditetradecylphosphatidylcholine results in a substantial refolding of the peptide backbones. The conformation stabilized by the membrane environment is a hydrogen-bonded turn structure. Conformational transitions in enkephalins induced by a lipid environment may play a role in the specific interactions between these hormones and their receptor sites.  相似文献   

16.
R R Joshi  K N Ganesh 《FEBS letters》1992,313(3):303-306
Hydrolysis of endothelin 1 by rat kidney membranes was investigated using a reverse-phase HPLC and an automated gas-phase protein sequencer. Endothelin 1 was hydrolyzed into four major fragments which were detected by HPLC. Phosphoramidon, an inhibitor of neutral endopeptidase 24,11, almost completely suppressed the production of three fragments, but one fragment was not affected by the inhibitor. Analysis of N-terminal sequences of the degradation products revealed that the phosphoramidon-sensitive fragments were generated by cleavage at the Ser5-Leu6 bond of endothelin 1 that was identical with its cleavage site by purified rat endopeptidase 24,11, reported previously. The phosphoramidon-insensitive fragment was produced by cleavage at Leu17-Asp18, which was distinct from the sites by endopeptidase 24,11, but corresponded to that by a phosphoramidon-insensitive metallo-endopeptidase recently isolated from rat kidney membranes by us [(1992) Eur. J. Biochem. 204, 547-552]. Kinetic determination of endothelin 1 hydrolysis by the isolated enzyme yielded values of Km = 71.5 microM and kcat = 1.49 s-1, giving a ratio of kcat/Km = 2.08 x 10(4) s-1.M-1. The Km value was much higher and the kcat/Km value was much lower than those for rat endopeptidase 24,11 reported previously. Thus, endopeptidase 24,11 appears to hydrolyze endothelin 1 more efficiently than the isolated enzyme does. Both enzymes may play physiological roles in the metabolism of endothelin 1 by rat kidney membranes in vivo.  相似文献   

17.
Neutral endopeptidase 24.11 contains an active-site arginine residue involved in binding the free carboxylate of substrate peptides and inhibitors. This arginine reacts rapidly with [14C]phenylglyoxal, and its reaction is selectively blocked by the presence of either the substrate Met5-enkephalin, the competitive inhibitor phenylalanylalanine, or the transition state analog phosphoramidon. The phenylglyoxal-modified peptide was isolated by a procedure involving limited digestion by trypsin, separation of the tryptic peptides by high pressure liquid chromatography (HPLC), further digestion of the modified peptide by pepsin, and a final purification by HPLC. By this procedure arginine 102 was identified as the active-site arginine. Verification of this finding came from the use of site-directed mutagenesis in which this arginine was replaced by glutamine. Both the mutant and wild-type enzyme reacted equally well with an amide containing substrate, glutaryl-Ala-Ala-Phe-4-methoxy-2-naphthylamide. However, reaction of the mutant enzyme with a substrate containing a free COOH-terminal carboxylate, 5-dimethylaminonaphthalene-1-sulfonyl-D-Ala-Gly-(NO2)Phe-Gly, was barely detectable with the mutant enzyme. Similarly the mutant enzyme showed a loss of selectivity in inhibition by D-Ala2-Met5-enkephalin compared to the corresponding amide but exhibited no difference in the maximal velocity for hydrolysis of D-Ala2-Met5-enkephalin and its amide.  相似文献   

18.
An enzyme hydrolyzing succinyl trialanine-4-nitroanilide was extracted from human kidney homogenate and purified by means of gel filtration on Sepharose CL-4B, anion-exchange chromatography on DEAE-Sepharose CL-6B and affinity chromatography on carbobenzoxy-L-Ala-L-Ala-D-Ala-polylysine-agarose. The purified enzyme consists of a single peptide, and its molecular weight was estimated to be about 125 000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme cleaved the substrate at the bond between succinyl dialanine and alanine-4-nitroanilide and showed a Km value of 2.1 mM at the optimal pH of 8.0. The activity was increased by Ca2+ and Mg2+, but was inhibited by phosphoramidon and ethylenediaminetetraacetic acid. The enzyme cleaved the oxydized insulin B chain, angiotensinogen tetradecapeptide, angiotensin I, angiotensin II, angiotensin III, [Sar1,Ala8]-angiotensin II, bradykinin, des-Pro2-bradykinin, Leu5-enkephalin, Met 5-enkephalin, [D-Ala2,Met5]-enkephalinamide and [D-Ala2-Met5]-enkephalin, but did not cleave [D-Ala2,D-Leu5]-enkephalin. The bonds on the amino side of the hydrophobic amino acids of the peptides were cleaved by the enzyme.  相似文献   

19.
An enzyme present in mouse brain cytosol cleaves C-terminal dipeptides from substrates including ACTH-(7-10) (Phe-Arg-Trp-Gly), and des-Tyr-[Met]- and des-Tyr-[Leu]enkephalin. By means of ion-exchange chromatography and gel filtration, the peptidase was purified to a specific activity of 1570 times that of brain homogenate. At this purification, a second peptidase, which hydrolyzes Trp-Gly and other peptides [M. E. A. Reith and A. Neidle (1979) Biochem. Biophys. Res. Commun. 90, 794-800] was still present, but could be removed by preparative polyacrylamide gel electrophoresis. The des Tyr-enkephalin-cleaving enzyme has a molecular weight of about 85,000 and a pH optimum of 7.8. It is inhibited by metal-chelating and sulfhydryl reagents. The enzyme has a strong preference for substrates with an aromatic residue in the position adjacent to the C-terminal amino acid, although some peptides meeting this criterion were competitive inhibitors rather than substrates. Peptides with less than four residues were inactive and, in general, tetrapeptides were found to be more reactive than larger analogs, when peptides with common C-terminal sequences were compared. The peptidyl dipeptidase, which has not been described previously, can be readily distinguished from angiotensin-converting enzyme (EC 3.4.15.1) and from neutral endopeptidase (EC 3.4.24.11) by its subcellular localization, substrate specificity, and response to inhibitors. It was suggested that peptidyl dipeptidase-B (PDP-B, EC 3.4.15.-) would be an appropriate name for the enzyme. PDP-B is widely distributed among mouse tissues.  相似文献   

20.
An endopeptidase was purified to homogeneity from the cell extracts of Treponema denticola ATCC 35405 (a human oral spirochete) by a procedure that comprised dialysis, anion exchange fast protein liquid chromatography (FPLC), hydroxylapatite FPLC, immobilized metal affinity FPLC, FPLC chromatofocusing, and two consecutive gel permeation FPLC steps. The enzyme is a 62-kDa protein with an isoelectric point of 6.5-7.0. Experiments with enzyme inhibitors suggest that this enzyme is a metallopeptidase and that its activity is not dependent on sulfhydryl or serine residues. The enzyme is active on furylacryloyl-Leu-Gly-Pro-Ala (FALGPA; pH optimum near 6.25), bradykinin (Bk), and several Bk-related peptides. In FALGPA, the cleavage site is the Leu-Gly bond. An imino acid is absolutely necessary in position P'2. The shortest hydrolyzed peptide was FALGPA, the hydrolysis of which is strongly and competitively inhibited by Bk (Ki = 5.0 microM). The pyrophosphate ion and phosphoramidon also inhibited the hydrolysis of FALGPA. The enzyme does not hydrolyze all typical synthetic collagenase substrates, Azocoll, Azocasein, or Type I and Type IV collagens, or any other proteins tested. In Bk-related peptides, the hydrolyzed bond was Phe5-Ser6. Since a Bk antagonist and a Bk-potentiating pentapeptide also were good substrates, it is possible that the enzyme hydrolyzes Bks and related peptides only because of the coincidental, specific amino acid sequence of those substrates. A proposal is made that since a substantial portion of the amino acid sequence of FALGPA is present in collagen (and additionally acknowledging that the furylacryloyl residue structurally resembles that of proline), the natural substrates of this enzyme may be small, soluble collagen fragments produced by other enzymes from periodontal connective tissue, and that such peptides are important for the nutrition and pathogenicity of T. denticola.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号