首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human ether-á-go-go related gene (hERG, K(v)11.1) potassium channels play a significant role in cardiac excitability. Like other K(v) channels, hERG is activated by membrane voltage; however, distinct from other K(v) channels, hERG channels have unusually slow kinetics of closing (deactivation). The mechanism for slow deactivation involves an N-terminal "eag domain" which comprises a PAS (Per-Arnt-Sim) domain and a short Cap domain. Here we review recent advances in understanding how the eag domain regulates deactivation, including several new Nuclear Magnetic Resonance (NMR) solution structures of the eag domain, and evidence showing that the eag domain makes a direct interaction with the C-terminal C-linker and Cyclic Nucleotide-Binding Homology Domain.  相似文献   

2.
Modulation of neuronal excitability is believed to be an important mechanism of plasticity in the nervous system. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been postulated to regulate the ether à go-go (eag) potassium channel in Drosophila. Inhibition of CaMKII and mutation of the eag gene both cause hyperexcitability at the larval neuromuscular junction (NMJ) and memory formation defects in the adult. In this study, we identify a single site, threonine 787, as the major CaMKII phosphorylation site in Eag. This site can be phosphorylated by CaMKII both in a heterologous cell system and in vivo at the larval NMJ. Expression of Eag in Xenopus oocytes was used to assess the function of phosphorylation. Injection of either a specific CaMKII inhibitor peptide or lavendustin C, another CaMKII inhibitor, reduced Eag current amplitude acutely. Mutation of threonine 787 to alanine also reduced amplitude. Moreover, both CaMKII inhibition and the alanine mutation accelerated inactivation. The reduction in current amplitudes and the accelerated inactivation of dephosphorylated Eag channels would result in decreased outward potassium currents and hyperexcitability at presynaptic terminals and, thus, are consistent with the NMJ phenotype observed when CaMKII is inhibited. These results show that Eag is a substrate of CaMKII and suggest that direct modulation of potassium channels may be an important function of this kinase.  相似文献   

3.
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the regulation of neuronal excitability in many systems. Recent studies suggest that local regulation of membrane potential can have important computational consequences for neuronal function. In Drosophila, CaMKII regulates the eag potassium channel, but if and how this regulation was spatially restricted was unknown. Using coimmunoprecipitation from head extracts and in vitro binding assays, we show that CaMKII and Eag form a stable complex and that association with Eag activates CaMKII independently of CaM and autophosphorylation. Ca(2+)/CaM is necessary to initiate binding of CaMKII to Eag but not to sustain association because binding persists when CaM is removed. The Eag CaMKII-binding domain has homology to the CaMKII autoregulatory region, and the constitutively active CaMKII mutant, T287D, binds Eag Ca(2+)-independently in vitro and in vivo. These results favor a model in which the CaMKII-binding domain of Eag displaces the CaMKII autoinhibitory region. Displacement results in autophosphorylation-independent activation of CaMKII which persists even when Ca(2+) levels have gone down. Activity-dependent binding to this potassium channel substrate allows CaMKII to remain locally active even when Ca(2+) levels have dropped, providing a novel mechanism by which CaMKII can regulate excitability locally over long time scales.  相似文献   

4.
Summary The DNA sequence of the entire colicin E2 operon was determined. The operon comprises the colicin activity gene, ceaB, the colicin immunity gene, ceiB, and the lysis gene, celB, which is essential for colicin release from producing cells. A potential LexA binding site is located immediately upstream from ceaB, and a rho-independent terminator structure is located immediately downstream from celB. A comparison of the predicted amino acid sequences of colicin E2 and cloacin DF13 revealed extensive stretches of homology. These colicins have different modes of action and recognise different cell surface receptors; the two major regions of heterology at the carboxy terminus, and in the carboxy-terminal end of the central region probably correspond to the catalytic and receptor-recognition domains, respectively. Sequence homologies between colicins E2, A and E1 were less striking, and the colicin E2 immunity protein was not found to share extensive homology with the colicin E3 or cloacin DF13 immunity proteins. The lysis proteins of the ColE2, ColE1 and CloDF13 plasmids are almost identical except in the aminoterminal regions, which themselves have overall similarity with lipoprotein signal peptides. Processing of the ColE2 prolysis protein to the mature form was prevented by globomycin, a specific inhibitor of the lipoprotein signal peptidase. The mature ColE2 lysis protein was located in the cell envelope. The results are discussed in terms of the functional organisation of the colicin operons and the colicin proteins, and the way in which colicins are released from producing cells.  相似文献   

5.
Molecular dynamics study of the KcsA potassium channel   总被引:2,自引:3,他引:2       下载免费PDF全文
TW Allen  S Kuyucak    SH Chung 《Biophysical journal》1999,77(5):2502-2516
The structural, dynamical, and thermodynamic properties of a model potassium channel are studied using molecular dynamics simulations. We use the recently unveiled protein structure for the KcsA potassium channel from Streptomyces lividans. Total and free energy profiles of potassium and sodium ions reveal a considerable preference for the larger potassium ions. The selectivity of the channel arises from its ability to completely solvate the potassium ions, but not the smaller sodium ions. Self-diffusion of water within the narrow selectivity filter is found to be reduced by an order of magnitude from bulk levels, whereas the wider hydrophobic section of the pore maintains near-bulk self-diffusion. Simulations examining multiple ion configurations suggest a two-ion channel. Ion diffusion is found to be reduced to approximately (1)/(3) of bulk diffusion within the selectivity filter. The reduced ion mobility does not hinder the passage of ions, as permeation appears to be driven by Coulomb repulsion within this multiple ion channel.  相似文献   

6.
Potassium (K+) channels are critical for a variety of cell functions, including modulation of action potentials, determination of resting membrane potential, and development of memory and learning. In addition to their role in regulating myocyte excitability, cardiac K+ channels control heart rate and coronary vascular tone and are implicated in the development of arrhythmias. We report here the cloning and sequencing of a k+ channel gene, KCNA1, derived from a human cardiac cDNA library and the chromosomal localization of the corresponding genomic clone. Oligonucleotides based on a delayed rectifier K+ channel gene were used in PCR reactions with human genomic DNA to amplify the S4-S6 regions of several different K+ channel genes. These sequences were used to isolate clones from a human cardiac cDNA library. We sequenced one of these clones, HCK1. HCK1 contains putative S2-S6 domains and shares approximately 70% sequence homology with previously isolated Shaker homologues. HCK1 was used to screen human cosmid libraries and a genomic clone was isolated. By sequencing the genomic clones, a putative S1 domain and translation initiation sequences were identified. Genomic mapping using human-rodent somatic cell panels and in situ hybridization with human metaphase chromosomes have localized KCNA1 to the distal short arm of human chromosome 12. This work is an important step in the study of human cardiac K+ channel structure and function and will be of use in the study of human inherited disease.  相似文献   

7.
The Kv1.3 voltage-gated potassium channel is involved in a number of processes in excitable and nonexcitable cells: maintenance of resting membrane potential, signal transduction, apoptosis, regulation of cell volume, activation and proliferation of white blood cells. Blocking this channel is an effective approach for the treatment of autoimmune, oncological, chronic inflammatory, and metabolic diseases. The most prospective blockers of Kv1.3 are toxins isolated from the venom of scorpions. Knowledge of the molecular aspects of binding of peptide blockers with the channel is an important condition for the creation of highly effective and selective ligands. In the present work, a complex of hybrid channel KcsA-Kv1.3 with agitoxin 2 was built using homology modeling and molecular dynamics simulation. Analysis of formed contacts allowed us to reveal a complete pattern of interactions and to identify key residues that are responsible for the toxin binding affinity. Results of computational experiment are consistent with the experimental data and important for drug development.  相似文献   

8.
Scorpion toxins affecting K(+) channels (KTxs) represent important pharmacological tools and potential drug candidates. Here, we report molecular characterization of seven new KTxs in the scorpion Mesobuthus eupeus by cDNA cloning combined with biochemical approaches. Comparative modeling supports that all these KTxs share a conserved cysteine-stabilized α-helix/β-sheet structural motif despite the differences in protein sequence and size. We investigated functional diversification of two orthologous α-KTxs (MeuTXKα1 from M. eupeus and BmP01 from Mesobuthus martensii) by comparing their K(+) channel-blocking activities. Pharmacologically, MeuTXKα1 selectively blocked Kv1.3 channel with nanomolar affinity (IC(50), 2.36 ± 0.9 nM), whereas only 35% of Kv1.1 currents were inhibited at 3 μM concentration, showing more than 1271-fold selectivity for Kv1.3 over Kv1.1. This peptide displayed a weak effect on Drosophila Shaker channel and no activity on Kv1.2, Kv1.4, Kv1.5, Kv1.6, and human ether-a-go-go-related gene (hERG) K(+) channels. Although BmB01 and MeuTXKα1 have a similar channel spectrum, their affinity and selectivity for these channels largely varies. In comparison with MeuTXKα1, BmP01 only exhibits a submicromolar affinity (IC(50), 133.72 ± 10.98 nM) for Kv1.3, showing 57-fold less activity than MeuTXKα1. Moreover, it lacks the ability to distinguish between Kv1.1 and Kv1.3. We also found that MeuTXKα1 inhibited the proliferation of activated T cells induced by phorbol myristate acetate and ionomycin at micromolar concentrations. Our results demonstrate that accelerated evolution drives affinity variations of orthologous α-KTxs on Kv channels and indicate that MeuTXKα1 is a promising candidate to develop an immune modulation agent for human autoimmune diseases.  相似文献   

9.
10.
The TM1 domain of the large conductance mechanosensitive (MS) channel of Escherichia coli was used as a genetic probe to search the genomic database of the archaeon Methanoccoccus jannashii for MscL homologs. We report that the hypothetical protein MJ0170 of M. jannashii exhibited 38.5% sequence identity with the TM1 domain of Eco-MscL. Moreover, MJ0170 was found to be a conserved homolog of MscS, the second type of E. coli MS channel encoded by the yggB gene. Furthermore, we identified a cluster of charged residues KIKEE in the C-terminus of MJ0170 that strikingly resembled the charged C-terminal amino acid cluster present in Eco-MscL (RKKEE). We cloned and expressed MJ0170 in E. coli, which when reconstituted into liposomes or expressed in the cell membrane of giant E. coli spheroplasts, exhibited similar activity to the bacterial MS channels. Our study suggests that the M. jannashii MS channel and its homologs evolved as a result of gene duplication of the ancestral MscL-like molecule with the TM1 domain remaining the most conserved structural motif among prokaryotic MS channels.  相似文献   

11.
Dryer SE 《Neuron》2003,37(5):727-728
Progress in understanding sodium-activated potassium channels (K(Na)), suggested to function in excitable cells both during physiological conditions and protectively during hypoxia, has been limited by their unknown molecular identity. In this issue of Neuron, Salkoff and coworkers now show that members of the Slo gene family, Slo2.1 and Slo2.2, encode functional K(Na) channels.  相似文献   

12.
Voltage-gated potassium channels are six-transmembrane (S1-S6) proteins that form a central pore domain (4 x S5-S6) surrounded by four voltage sensor domains (S1-S4), which detect changes in membrane voltage and control pore opening. Upon depolarization, the S4 segments move outward carrying charged residues across the membrane field, thereby leading to the opening of the pore. The mechanism of S4 motion is controversial. We have investigated how S4 moves relative to the pore domain in the prototypical Shaker potassium channel. We introduced pairs of cysteines, one in S4 and the other in S5, and examined proximity changes between each pair of cysteines during activation, using Cd2+ and copper-phenanthroline, which crosslink the cysteines with metal and disulphide bridges, respectively. Modelling of the results suggests a novel mechanism: in the resting state, the top of the S3b-S4 voltage sensor paddle lies close to the top of S5 of the adjacent subunit, but moves towards the top of S5 of its own subunit during depolarization--this motion is accompanied by a reorientation of S4 charges to the extracellular phase.  相似文献   

13.
Tu DN  Zou AR  Liao YH  Du YM  Wang XP  Li L 《生理学报》2008,60(4):525-534
采用双电极电压钳技术,研究酮色林对表达在非洲爪蟾卵母细胞上的野生型和Y652突变型人类ether-a-go-go相关基因(human ether-a-go-go-related gene,HERG)钾通道的阻断效应,观测HERG通道的分子位点特性改变对其阻断效应的影响.结果显示,酮色林以电压依赖性和浓度依赖性的方式阻断野生型的HERG钾通道电流.尾电流包裹程序记录电流显示酮色林对HERG钾通道微小的张力性阻断.阻断特征符合对开放状态通道的阻断特征.酮色林也能调节失活状态的HERG钾通道.位于孔道S6区的氨基酸位点突变Y652A和Y652R可显著减弱酮色林对HERG通道的阻断作用.同野生犁HERG钾通道的阻断相比,Y652A突变使阻断的IC50提高72倍,而Y652R突变使阻断的IC50提高53倍.Y652A和Y652R的阴断效应之间没有明显的差别.以上结果提示,酮色林优先阻断开放状态的HERG钾通道,而Y652是酮色林与通道结合的关键位点之一.  相似文献   

14.
15.
Expression of the potassium channel ROMK in adult and fetal human kidney   总被引:1,自引:1,他引:1  
The renal potassium channel ROMK is a crucial element of K+ recycling and secretion in the distal tubule and the collecting duct system. Mutations in the ROMK gene (KCNJ1) lead to hyperprostaglandin E syndrome/antenatal Bartter syndrome, a life-threatening hypokalemic disorder of the newborn. The localization of ROMK channel protein, however, remains unknown in humans. We generated an affinity-purified specific polyclonal anti-ROMK antibody raised against a C-terminal peptide of human ROMK. Immunoblotting revealed a 45 kDa protein band in both rat and human kidney tissue. In human kidney sections, the antibody showed intense staining of epithelial cells in the cortical and medullary thick ascending limb (TAL), the connecting tubule, and the collecting duct. Moreover, a strong expression of ROMK protein was detected in cells of the macula densa. In epithelial cells of the TAL expression of ROMK protein was mainly restricted to the apical membrane. In human fetal kidney expression of ROMK protein was detected mainly in distal tubules of mature nephrons but not or only marginally in the collecting system. No expression was found in early developmental stages such as comma or S shapes, indicating a differentiation-dependent expression of ROMK protein. In summary, these findings support the proposed role of ROMK channels in potassium recycling and in the regulation of K+ secretion and present a rationale for the phenotype observed in patients with ROMK deficiency.  相似文献   

16.
The melanocortin-2 receptor (MC2R), also known as the adrenocorticotropic hormone (ACTH) receptor, plays an important role in regulating and maintaining adrenocortical function, specifically steroidogenesis. Mutations of the human MC2R (hMC2R) gene have also been identified in humans with familial glucocorticoid deficiency; however, the molecular basis responsible for hMC2R ligand binding and signaling remains unclear. In this study, both truncated ACTH peptides and site-directed mutagenesis studies were used to determine molecular mechanisms of hMC2R binding ACTH and signaling. Our results indicate that ACTH1-16 is the minimal peptide required for hMC2R binding and signaling. Mutations of common melanocortin receptor family amino acid residues E80 in transmembrane domain 2 (TM2), D107 in TM3, F178 in TM4, F235 and H238 in TM6, and F258 in TM7 significantly reduced ACTH-binding affinity and signaling. Furthermore, mutations of unique amino acids D104 and F108 in TM3 and F168 and F178 in TM4 significantly decreased ACTH binding and signaling. In conclusion, our results suggest that the residues in TM2, TM3, and TM6 of hMC2R share similar binding sites with other MCRs but the residues identified in TM4 and TM7 of hMC2R are unique and required for ACTH selectivity. Our study suggests that hMC2R may have a broad binding pocket in which both conserved and unique amino acid residues are required, which may be the reason why alpha-MSH was not able to bind hMC2R.  相似文献   

17.
The voltage-gated Kv2.1 channel is composed of four identical subunits folded around the central pore and does not inactivate appreciably during short depolarizing pulses. To study voltage-induced relative molecular rearrangements of the channel, Kv2.1 subunits were genetically fused with enhanced cyan fluorescent protein and/or enhanced yellow fluorescent protein, expressed in COS1 cells, and investigated using fluorescence resonance energy transfer (FRET) microscopy combined with patch clamp. Fusion of fluorophores to either or both termini of the Kv2.1 monomer did not significantly affect the gating properties of the channel. FRET between the N- and C-terminal tags fused to the same or different Kv2.1 monomers decreased upon activation of the channel by depolarization from -80 to +60 mV, suggesting voltage-gated relative rearrangement between the termini. Because FRET between the Kv2.1 N- or C-terminal tags and the membrane-trapped EYFP(N)-PH pleckstrin homology domains did not change on depolarization, voltage-gated relative movements between the Kv2.1 termini occurred in a plane parallel to the plasma membrane, within a distance of 1-10 nm. FRET between the N-terminal tags did not change upon depolarization, indicating that the N termini do not rearrange relative to each other, but they could either move cooperatively with the Kv2.1 tetramer or not move at all. No FRET was detected between the C-terminal tags. Assuming their randomized orientation in the symmetrically arranged Kv2.1 subunits, C termini may move outwards in order to produce relative rearrangements between N and C termini upon depolarization.  相似文献   

18.
The cell-attached and inside-out patch clamp techniques were used to record single-channel currents from human epidermal fibroblasts. A large-conductance channel (320 pS in symmetric 140 mM KCl) with high potassium selectivity was observed in many patches, particularly those located at the borders of the cells. The channel exhibited both voltage and calcium sensitivity and, therefore, was regarded as a variety of the large-conductance calcium-activated potassium channels reported in many preparations. Probability density functions, fitted to histograms of open and closed time durations at 35 degrees C, usually displayed a minimum of one open state and two closed states. However, kinetic analysis by the fractal method suggested more complicated behavior, particularly for the closed condition. It was not uncommon to observe several channels in one patch. This was distinguishable from the presence of subconductances, which were also observed. Although this channel could have many roles, it seems likely to mediate the calcium-activated conductance that underlies the hyperpolarizing response of fibroblasts to mechanical, electrical, or chemical stimuli.  相似文献   

19.
Endothelial progenitor cells (EPCs) are bone marrow-derived cells that have the propensity to differentiate into mature endothelial cells (ECs). The transplantation of EPCs has been shown to enhance in vivo postnatal neo-vasculogenesis, as well as repair infarcted myocardium. Via the whole-cell patch clamp technique, numerous types of ion channels have been detected in EPCs, including the inward rectifier potassium channel (IKir), Ca2+-activated potassium channel (IKCa), and volume-sensitive chloride channel, but their influence on the differentiation of EPCs has yet to be characterized. The present study was designed to investigate: (1) which ion channels have the most significant impact on the differentiation of EPCs; (2) what role ion channels play in the functional development of EPCs; (3) the mRNA and protein expression levels of related ion channel subunits in EPCs. In our study, EPCs were obtained from the peripheral blood of healthy adults and cultured with endothelial growth factors. When EPCs differentiate into mature ECs, they lose expression of the stem cell/progenitor marker CD133, as analyzed by flow cytometry (0.44 ± 0.20 %). However, treatment with the potassium channel inhibitor, tetraethylammonium (TEA) results in an increase in CD133+ cells (25.50 ± 7.55 %). In a functional experiment, we observed a reduction in the capacity of TEA treated ECs (differentiated from EPCs) to form capillary tubes when seeded in Matrigel. At the mRNA and protein levels, we revealed several K+ subtypes, including KCNN4 for IKCa, KCNNMA1 for BKCa and Kir3.4 for IKir. These results demonstrate for the first time that potassium channels play a significant role in the differentiation of EPCs. Moreover, inhibition of potassium channels may depress the differentiation of EPCs and the significant potassium channel subunits in EPCs appear to be IKCa, BKCa and Kir3.4.  相似文献   

20.
RCK (regulator of conductance of potassium) domains form a family of ligand-binding domains found in many prokaryotic K+ channels and transport proteins. Although many RCK domains contain an apparent nucleotide binding motif, some are known instead to bind Ca2+, which can then facilitate channel opening. Here we report on the molecular architecture and ligand activation properties of an RCK-containing potassium channel cloned from the prokaryote Thermoplasma volcanium. This channel, called TvoK, is of an apparent molecular mass and subunit composition that is consistent with the hetero-octameric configuration hypothesized for the related MthK (Methanobacterium thermoautotrophicum potassium) channel, in which four channel-tethered RCK domains coassemble with four soluble (untethered) RCK domains. The expression of soluble TvoK RCK subunits arises from an unconventional UUG start codon within the TvoK gene; silent mutagenesis of this alternative start codon abolishes expression of the soluble form of the TvoK RCK domain. Using single channel recording of purified, reconstituted TvoK, we found that the channel is activated by Ca2+ as well as Mg2+, Mn2+, and Ni2+. This non-selective divalent activation is in contrast with the activation properties of MthK, which is selectively activated by Ca2+. Transplantation of the TvoK RCK domain into MthK generates a channel that can be activated by Mg2+, illustrating that the Mg2+ binding site is likely contained within the RCK domain. We present a working hypothesis for TvoK gating in which the binding of either Ca2+ or Mg2+ can contribute approximately 5 kcal/mol toward stabilization of the open conformation of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号